Использование возобновляемых источников. Возобновляемые источники энергии: роль на мировой сцене

Никаких катастроф. Никаких вредных для климата выбросов углекислого газа. Возобновляемые источники энергии — это экологически чистая и безопасная альтернатива атомной энергии. Использование ВИЭ с каждым годом становится все более рентабельным.

Эксперты Гринпис и другие специалисты прогнозируют, что к 2030 году возобновляемые источники энергии будут удовлетворять 40% мирового спроса на энергию и до 80% спроса — к середине столетия. Более того, к 2050 году 100% электроэнергии мир может получать из возобновляемых источников.

Ни один из секторов энергетики не развивается так быстро, как ветровая и солнечная энергетика. Ежегодно они растут на 30% — 35%.

Вот лишь несколько примеров того, как альтернативные источники энергии завоевывают мир:
Почти половина всех вновь вводимых мощностей в электроэнергетике - это установки на основе возобновляемых источников энергии.
В солнечной электроэнергетике (фотовольтаике) 2010 году было введено 16 000 МВт, общая установленная мощность достигла 40 000 мегаватт.
В 2009 году ветровая энергетика вытеснила угольную с третьего места по количеству вырабатываемой электроэнергии.
В 2010 году в Китае возводили примерно по одной ветротурбине в час. Каждые 8 часов Китай вводит столько же мощностей в ветроэнергетике, сколько есть во всей России — 15 МВт.
Мощность ветроустановок в мире увеличилась в 2010 году на 35 800 МВт, таким образом, общая мощность ветростанций составила 194 400 МВт. Инвестиции в новые ветряки в 2010 году составили 47,3 миллиарда Евро.
10% совокупного спроса на энергию в Новой Зеландии удовлетворяется за счет геотермальной энергии.
Всего за 5 лет доля возобновляемой энергии в Португалии увеличилась с 15% до 45%.

К середине столетия ВИЭ обеспечат весь мир электроэнергией

Гринпис давно убеждает мировое сообщество в том, что в ближайшем будущем возобновляемые источники энергии смогут обеспечивать мир электроэнергией. Сейчас доля ВИЭ в общемировом производстве тепла — 24%, электричества — 18%. Остальные 80% электроэнергии мир получает за счет сжигания ископаемого топлива. Однако в скором будущем эта картина сильно изменится.

В 2011 году Гринпис и Европейская Ассоциация фотоэлектрической индустрии (EPIA) опубликовали совместный доклад «Солнечная энергетика». По их подсчетам, солнечная энергетика могла бы уже к 2020 году давать Европе 12% всей необходимой ей электроэнергии, а к 2030 году — обеспечить 9% общемирового спроса.

Что касается энергии ветра, то ветропарки к 2030 будут давать миру до 22% электроэнергии, прогнозируют авторы доклада Global Wind Energy Outlook 2010 , выпущенного Международным советом в области ветровой энергетики (Global Wind Energy Council) совместно с Гринпис.

Существуют и другие исследования, подтверждающие эти выводы. Компания PricewaterhouseCoopers предсказывает, что к 2050 году Европа и Северная Африка могут полностью перейти на возобновляемую энергию.

Суть всех исследований сводится к одному: технологии ВИЭ находятся на пороге экономического прорыва. Появляются новые способы производства возобновляемой энергетики — соответственно растет и конкуренция на рынке ВИЭ. Стоимость производства фотоэлектрической (солнечной) энергии значительно снизилась за последние несколько лет, и к 2015 году она может упасть еще на 40%. Правительства многих стран активно вкладывают деньги в возобновляемую энергетику. В 2009 году Китай отобрал у США звание крупнейшего инвестора в экологически чистую энергию, вложив в ВИЭ 34,6 млрд долларов США. Для сравнения: Россия ежегодно тратит на строительство новых АЭС примерно 3 млрд долларов.

Альтернативная энергетика в России

Если не учитывать крупные ГЭС, в России доля возобновляемых источников энергии в производстве электроэнергии — примерно 1%. Чуть больше доля ВИЭ в тепловой энергетике — около 2%. То есть большую часть (90%) всей, производимой в России первичной энергии по-прежнему дают уголь, нефть и газ.

Потенциал альтернативной энергетики в России очень высокий. Из возобновляемых источников мы могли бы получать до четверти всей необходимой стране энергии. Без ущерба для экономики, ведь все необходимые технологии и средства у России уже есть.

Но для этого нужно перестать субсидировать традиционную энергетику, прежде всего строительство новых атомных станций и крупных ГЭС. Одна только атомная энергетика ежегодно получает из федерального бюджета до 100 млрд рублей безвозмездной финансовой помощи для строительства новых АЭС. Если правительство гарантирует инвесторам стабильный доход от вложений в возобновляемую энергетику (за счет налоговых льгот и других механизмов финансовой поддержки), то энергия ветра и солнца составит серьезную конкуренцию углю и атому.

Разработанный Гринпис сценарий - реалистичен. Это доказывает опыт других стран. Китай к 2020 году планирует повысить долю ВИЭ в электроэнергетике до 15%, Египет — до 20%, Евросоюз — до 30%. Увы, планы российских властей существенно скромнее — 4,5% вместо вполне достижимых 13%.

Технологически заменить атомную энергетику ветровой и солнечной возможно. Есть пример далеко не солнечной Германии. После аварии на японской АЭС «Фукусима-1» ФРГ остановила для проверки 8 реакторов мощностью 8,8 ГВт, заменив их не газом или импортным топливом, а энергией ветра и солнца.

О.С. Попель , председатель Научного совета РАН по нетрадиционным возобновляемым источникам энергии, заведующий Лабораторией возобновляемых источников энергии и энергоснабжения Объединенного института высоких температур РАН, член Экспертного совета Координационного совета Президиума Генерального совета Всероссийской политической партии «ЕДИНАЯ РОССИЯ» по вопросам энергосбережения и повышения энергетической эффективности

Введение

Сегодня возобновляемые источники энергии (ВИЭ) привлекают все большее внимание, как простых людей, так и руководств многих государств, международных организаций. На заседаниях Большой восьмерки (двадцатки) в последнее время регулярно обсуждаются нарастающие проблемы энергетики и экологии, решение которых в мировом масштабе в будущем не представляется возможным без широкого использования экологически чистых ВИЭ.

Как ни печально, но следует признать, что в отличие от многих других стран в России ясной и последовательной государственной политики в области ВИЭ пока не сформулировано. Политические декларации о важности ВИЭ пока не подкреплены необходимым набором законодательных актов и нормативных документов, стимулирующих использование ВИЭ и определяющих «правила игры» для инвесторов и потребителей «зеленой энергии». Отношение к ВИЭ в России полярное. Есть энтузиасты, которые настаивают на том, что ВИЭ нам нужно использовать как можно шире уже прямо сейчас, а есть пессимисты, в основном из среды топливно-энергетического комплекса, которые утверждают, что для России, являющейся энергетической державой с огромными запасами органических топлив, ВИЭ малоперспективны, в обозримом будущем не смогут внести заметный вклад в энергобаланс страны и поэтому ими всерьез заниматься пока не следует.

В своей статье я хотел бы постараться объективно осветить проблему, дать общую картину, что происходит с возобновляемыми источниками энергии в мире и обосновать, насколько они актуальны для России.

Возобновляемые источники включают широкий спектр источников энергии и технологий их преобразования в полезные для человека виды (электричество, тепло, холод, печные и моторные топлива и т.п.). Большая часть ВИЭ имеют солнечное происхождение (само солнечное излучение, ветер, водные потоки, биомасса). К «не солнечным» относятся геотермальная энергия, морские приливы, сбросное тепло антропогенного происхождения и др. Отмечу, что все известные источники в той или и иной степени могут претендовать на то, чтобы найти эффективное применение в том или ином секторе экономики.

Стимулы развития ВИЭ в мире

Основными стимулами развития возобновляемых источников в мире являются следующие обостряющиеся со временем проблемы, стоящие перед человечеством:

  • 1. Как обеспечить возрастающие энергетические потребности быстро растущего населения мира? В начале ХХI века мировое потребление энергии превысило 500 ЭДж/год (1 ЭДж = 10 18 Дж) или около 12 млрд тн.э./год. По различным прогнозам уже к 2020г. мировое энергопотребление возрастет более чем в полтора раза, в первую очередь, за счет развивающихся стран (рост населения с одновременным повышением удельного в расчете на 1 человека потребления энергии). В условиях постепенного истощения дешевых запасов органического топлива возможность полного и с приемлемыми затратами удовлетворения растущих энергетических потребностей вызывает серьезные опасения. Ядерная энергетика после ряда серьезных аварий на АЭС пока не вызывает доверия общественности, да и ее полноценное развитие возможно лишь при переходе на новые типы реакторов-размножителей, обеспечивающих воспроизводство ядерного топлива, что сопряжено с необходимостью освоения новых технологий и определенными дополнительными рисками. Термоядерная энергетика пока не вышла из стадии фундаментальных исследований, и сроки ее возможного промышленного освоения пока не предсказуемы. В этой ситуации ставка на расширение масштабов использования ВИЭ, ресурсы которых по сравнению с обозримыми энергетическими потребностями человечества практически неограниченны, несмотря на повышенные затраты, представляется вполне оправданной.
  • 2. Как обеспечить энергетическую безопасность стран и регионов, сильно зависящих от импорта энергоресурсов? Эта проблема стоит еще более остро и актуально, чем предыдущая. Мир довольно жестко поделен на страны экспортеры и импортеры энергоресурсов. Месторождения органических топлив и урана по миру распределены крайне «несправедливо», что вызывает экономические и политические кризисы и создает напряженность в мире. ВИЭ распределены по странам мира более или менее равномерно и доступны в том или ином виде и количестве в любой географической точке, что обусловливает их дополнительную привлекательность.
  • 3. Как обеспечить экологическую безопасность? Масштабы современной энергетики пока еще малы в рамках природного энергетического баланса: потребление энергии человечеством составляет всего около 2/10000 суммарного поступления энергии солнечного излучения на поверхность Земли. Вместе с тем, в сравнении с энергией, идущей на процессы фотосинтеза (около 40 ТВт), мировая энергетика соизмерима и, по оценкам, достигает около 20% от нее, что указывает на принципиальную возможность заметного глобального влияния энергетики на биосферу. Энергетика ответственна примерно за 50% всех вредных антропогенных выбросов в окружающую среду, в том числе парниковых газов. Не вызывает сомнений, что ВИЭ более экологически безопасны, чем традиционные источники.

Немаловажными аргументами в пользу развития ВИЭ являются также:

  • забота о будущих поколениях: энергетика - крайне инерционная сфера экономики, продвижение новых энергетических технологий занимает десятки лет, необходима диверсификация первичных источников энергии, в том числе за счет разумного использования ВИЭ;
  • многие технологии энергетического использования ВИЭ уже подтвердили свою состоятельность и за последнее десятилетие продемонстрировали существенное улучшение технико-экономических показателей. Удельные капитальные затраты на создание энергоустановок на ВИЭ и стоимость генерируемой ими энергии приблизились к аналогичным показателям традиционных энергоустановок, и в ряде случаев использование ВИЭ в некоторых регионах и практических приложениях стало вполне конкурентоспособным.

Недостатки ВИЭ

Справедливости ради необходимо отметить, что ВИЭ имеют как массу достоинств, так и существенные недостатки. К недостаткам, прежде всего, относится то, что ВИЭ характеризуются, как правило, небольшой плотностью энергетических потоков: солнечное излучение - менее 1 кВт на 1 м 2 , ветер при скорости 10 м/с и поток воды при скорости 1 м/с - около 500 Вт на 1 м 2 . В то время как в современных энергетических устройствах, мы имеем потоки, измеряемые сотнями киловатт, а иногда и мегаваттами на 1 м 2 . Сбор, преобразование и управление энергетическими потоками малой плотности, в ряде случаев имеющих суточную, сезонную и погодную нестабильность, требуют значительных затрат на создание приемников, преобразователей, аккумуляторов, регуляторов и т.п. Высокие начальные капитальные затраты, правда, в большинстве случаев компенсируются низкими эксплуатационными издержками.

Важно подчеркнуть, что использование ВИЭ оказывается целесообразным, как правило, лишь в оптимальном сочетании с мерами повышения энергоэффективности: например, бессмысленно устанавливать дорогие солнечные системы отопления или тепловые насосы на дом с высокими тепловыми потерями, неразумно с помощью фотоэлектрических преобразователей обеспечивать питание электроприборов с низким КПД, например, систем освещения с лампами накаливания.

Практика использования ВИЭ в мире

Каковы масштабы практического использования ВИЭ в мире? Имеющиеся данные позволяют утверждать, что в мире наблюдается бум возобновляемой энергетики.

Установленная мощность электрогенерирующих установок на нетрадиционных ВИЭ (без крупных ГЭС) к концу 2008 г. достигла 280 ГВт, а в 2010 г. превысила мощность всех атомных электростанций - 340 ГВт. Суммарная мощность 150 тыс. ВЭУ в составе сетевых ветростанций на конец 2009 г. составила 159 ГВт. За 2009 г. в эксплуатацию было введено 39 ГВт ВЭУ, их установленная мощность по сравнению с концом 2008 г. (120 ГВт) выросла на 32%. Выработка ими электроэнергии в 2009 г. достигла 324 ТВт×ч.

Суммарная мощность действующих в мире фотоэлектрических преобразователей (ФЭП) к концу 2009 г. достигла 21,3 ГВт, причем в 2009 г. в эксплуатацию было введено более 7 ГВт, а прирост продаж ФЭП на мировом рынке за год составил более 50%. Годовая выработка ими электроэнергии в 2009 г. составила 23,9 ТВт×ч.

Суммарная мощность энергоустановок на биомассе в 2009 г. достигла 60 ГВт, а годовая выработка электроэнергии более 300 ТВт×ч.

Мощность геотермальных электростанций превысила 10,7 ГВт, а выработка ими электроэнергии 62 ТВт×ч/год.

Суммарная тепловая мощность установок солнечного теплоснабжения в 2008 г. достигла 145 ГВт (более 180 млн м 2 солнечных коллекторов), солнечное горячее водоснабжение имеет более 60 млн домов в мире, ежегодные темпы роста более 15%.

Производство биотоплив (этанол и биодизель) в 2008 г. превысило 79 млрд литров в год (около 5% от ежегодного мирового потребления бензина, биоэтанол - 67, биодизель - 12 млрд литров в год. По сравнению с 2004 г. производство биодизеля возросло в 6 раз, а биоэтанола удвоилось).

В 30 странах мира действует более 2 млн тепловых насосов, суммарной тепловой мощностью более 30 ГВт, утилизирующих природное и сбросное тепло и обеспечивающих тепло- и холодоснабжение зданий.

В настоящее время около 100 стран имеют специальные государственные программы освоения ВИЭ и на государственном уровне утвержденные индикативные показатели их развития на среднесрочную и долгосрочную перспективу. Большинство стран ставят своей целью добиться вклада ВИЭ в энергобаланс страны на уровне не менее 15-20% к 2020 г., а страны Европейского Союза - до 40% к 2040 г. Приоритетное развитие ВИЭ с темпами роста в десятки процентов в год осуществляется при мощной государственной законодательной, финансовой и политической поддержке.

ВИЭ в России

Что же происходит в России? Нужно ли в России форсировать развитие использования ВИЭ?

С точки зрения макроэкономических показателей, Россия, казалось бы, с избытком обеспечена традиционными энергоресурсами. Анализ энергобаланса показывает, то из всех добываемых в стране энергоресурсов около 2/3 экспортируется за рубеж. 45% - в натуральном виде, еще около 13% - в виде энергоемкой продукции низкого передела (металл, удобрения и т.п.), около 6% - приходится на энергию, затрачиваемую на транспорт энергоресурсов и указанной продукции по территории России за рубеж. Что касается нефти, то сегодня 80% всей добываемой в стране нефти экспортируется. Утвержденная Энергетическая стратегия России на период до 2030 г. фактически предусматривает лишь незначительное относительное снижение экспорта энергоресурсов. Экспортная ориентация во многом обусловлена тем, что нефтегазовый комплекс страны обеспечивает около 17% российского ВВП и более 40% доходов консолидированного бюджета, и отказаться от таких доходов крайне сложно. Возникает, однако, вопрос: насколько такая политика дальновидна и стратегически обоснована?

Успокаивает, видимо, то что, по имеющимся оценкам, Россия занимает 1 место по запасам природного газа (23% мировых запасов), 2 место по запасам угля (19% мировых запасов), 5-7 место по запасам нефти (4-5% мировых запасов). На Россию приходится 8% мировой добычи природного урана. Однако и в России легкодоступные месторождения относительно дешевых энергоресурсов быстро истощаются, а разведка и освоение новых месторождений требует огромных затрат. Очевидно, что энергетическая политика страны уже в ближайшее время потребует серьезной коррекции в сторону более рачительного использования энергоресурсов.

С точки зрения международных обязательств России по экологии в стране пока все обстоит благополучно. Резкое падение производства в 1990-2000 гг. привело почти к 40% сокращению выбросов СО 2 в атмосферу.

Оценки показывают, что даже без принятия специальных мер к 2030 г. объемы выбросов не достигнут уровня 1990 г., и проявлять особого беспокойства по этому поводу не требуется.

Приведенные данные, казалось бы, на стороне пессимистов: возобновляемые источники энергии для России при макроэкономическом анализе представляются не актуальными.

Однако давайте теперь посмотрим на Россию, немного с других позиций: с позиций регионов страны и конкретных потребителей энергии.

Факты говорят о том, что:

  • 2/3 территории страны с населением около 20 млн человек находится вне сетей централизованного энергоснабжения. Это - районы страны с наиболее высокими ценами и тарифами на топливо и энергию (10-20руб./кВт и выше);
  • большая часть регионов страны реально энергодефицитны, нуждаются в завозе топлива и поставке энергии. Для них столь же актуально решение проблемы региональной энергетической безопасности, как и для стран-импортеров энергоресурсов;
  • в нашей стране, являющейся газовой державой, газифицировано лишь около 50% городских и около 35% сельских населенных пунктов. Здесь используется уголь, нефтепродукты, являющиеся источниками локального загрязнения окружающей среды;
  • в условиях постоянного роста тарифов и цен на энергию и топливо, растущих затрат на подключение к сетям централизованного энергоснабжения автономная энергетика в стране развивается опережающими темпами: ввод за последние 10 лет дизельных и бензогенераторов единичной мощностью до 100кВт превысил ввод крупных электростанций. Потребители энергии стремятся обеспечить себя собственными источниками электроэнергии и тепла, что, как правило, ведет к снижению эффективности использования топлива по сравнению с комбинированным производством электроэнергии и тепла на ТЭЦ и снижению эффективности всей энергетики страны.

Технико-экономические оценки показывают, что именно районы с децентрализованным и автономным энергоснабжением являются наиболее привлекательными для эффективного использования нетрадиционных возобновляемых источников энергии.

Необходимо проведение целенаправленных исследований и разработок в обоснование эффективности практического использования ВИЭ в конкретных условиях с учетом реальных климатических условий и особенностей потребителей. Крайне важно при поддержке региональных властей создание сети демонстрационных объектов, наглядно показывающих преимущества использования ВИЭ и служащих центрами развития бизнеса в этом секторе энергетики.

Вклад нетрадиционных ВИЭ (без крупных ГЭС) в энергобаланс России пока не превышает 1%. Принятые в последнее время государственные решения предписывают довести вклад ВИЭ к 2020 г. до 4,5%, что потребует ввода энергоустановок на ВИЭ суммарной мощностью 20-25 ГВт. Однако эти решения пока не подкреплены должным образом законодательством и нормативными актами, не приняты принципиальные решения о стимулировании развития ВИЭ, что делает проблематичным выполнение принятых решений.

Россия существенно отстает от ведущих стран по разработке и освоению технологий использования ВИЭ. Тем не менее, имеются примеры реализации успешных проектов в этой области. Это относится к созданию нескольких геотермальных станций на Камчатке, ввод которых позволил существенно сократить объемы завоза дизельного топлива в этот регион. Частный бизнес осуществил «прорыв» в освоении производства древесных пеллет из отходов деревопереработки. Россия вошла в число мировых лидеров по объему производства пеллет (более 2 млн т в год). К сожалению, они производятся преимущественно для экспорта в европейские страны, внутри страны эффективное их использование пока сдерживается административными и экономическими барьерами. Имеются определенные успехи в создании приливных энергоустановок с использованием оригинальных отечественных разработок. Ряд компаний уделяют большое внимание освоению технологий масштабного производства фотоэлектрических преобразователей, но, опять же, с ориентацией преимущественно на экспорт.

Выводы и предложения

Итак, несмотря на то, что Россия, безусловно, лучше, чем любая другая страна в мире, обеспечена собственными запасами традиционных топливно-энергетических ресурсов, развитие возобновляемых источников энергии является крайне важным стратегическим направлением будущей энергетики. Необходимость ускоренного развития ВИЭ уже сегодня в России обусловлено как потребностями в обеспечении энергетической безопасности регионов страны находящихся вне систем централизованного энергоснабжения, где многие технологии использования ВИЭ достигли уровня конкурентоспособности, так и потребностями создания надежного задела в инновационном развитии энергетики страны для будущих поколений.

Если в автономной энергетике многие технологии использования ВИЭ уже сегодня могут быть вполне конкурентоспособными, то в централизованной энергетике требуется реализация мер государственной экономической поддержки по аналогии с другими странами. В этой сфере крайне важно ускорение принятия предусмотренных распоряжениями Правительства нормативных документов, стимулирующих развитие ВИЭ.

  • Ускоренное развитие ВИЭ в России необходимо рассматривать как важный фактор модернизации экономики, в том числе связанной с развитием инновационных производств, разработкой новых инновационных технологий, развитием малого и среднего бизнеса, созданием новых рабочих мест, улучшением социальных условий, улучшением экологии и т.п.

Государство должно быть заинтересованным в развитии ВИЭ и активно содействовать развитию этого нового направления в энергетике, прежде всего, путем создания стимулов для бизнеса. При этом участие государства в развитии ВИЭ не должно стать благотворительностью за счет налогоплательщика, а государственным бизнесом. Каждый затраченный бюджетный рубль на поддержку ВИЭ должен стать окупаемым, он, как показывают оценки и опыт других стран, может и должен приносить прибыль в бюджет в результате развития бизнеса.

ИНТЕРЕСНО

Год рождения эры солнечной энергетики

В далеком 1839 г. Александр Эдмон Беккерель открыл фотогальванический эффект. Спустя 44 года Чарльзу Фриттсу удалось сконструировать первый модуль с использованием солнечной энергии, а основой для него послужил селен, покрытый тончайшим слоем золота. Ученый установил, что такое сочетание элементов позволяет, хоть и в минимальной степени (около 1%), преобразовывать энергию солнца в электричество.

Однако так думают не все. В научном свете бытует мнение, что «отцом» эпохи солнечной энергии является не кто иной, как сам Альберт Эйнштейн.

В последние десятилетия в мировой энергетике наблюдаются качественные изменения, обусловленные экономическими, политическими и технологическими причинами. Одна из основных тенденций - снижение потребления топливных ресурсов – их доля в общемировом производстве электроэнергии за последние 30 лет сократилась с 75% до 68% в пользу использования возобновляемых ресурсов (рост с 0,6% до 3,0%).

Странами-лидерами в развитии производства энергии из нетрадиционных источников являются Исландия (на долю возобновляемых источников энергии приходится около 5% энергетики, в основном используются геотермальные источники), Дания (20,6%, основной источник – энергия ветра), Португалия (18,0%, основные источники – энергия волн, солнца и ветра), Испания (17,7%, основной источник – солнечная энергия) и Новая Зеландия (15,1%, в основном используется энергия геотермальных источников и ветра).

Крупнейшими мировыми потребителями возобновляемой энергии являются Европа, Северная Америка и страны Азии.

Китай, США, Германия, Испания и Индия обладают почти тремя четвертями общемирового парка ветроэнергетических установок. Среди стран, которые характеризуются наилучшим развитием малой гидроэнергетики, лидирующее положение занимает Китай, на втором месте Япония, на третьем - США. Пятерку лидеров замыкают Италия и Бразилия.

В общей структуре установленных мощностей объектов солнечной энергетики лидирует Европа, далее следуют Япония и США. Высокий потенциал развития солнечной энергетики имеют Индия, Канада, Австралия, а также ЮАР, Бразилия, Мексика, Египет, Израиль и Марокко.

Первенство в геотермальной электроэнергетике сохраняют США. Затем идут Филиппины и Индонезия, Италия, Япония и Новая Зеландия. Активно развивается геотермальная энергетика в Мексике, в странах Центральной Америки и в Исландии - там за счет геотермальных источников покрывается 99% всех энергетических затрат. Перспективными источниками перегретых вод обладают множественные вулканические зоны, в том числе Камчатка, Курильские, Японские и Филиппинские острова, обширные территории Кордильер и Анд.

Согласно многочисленным экспертным заключениям, мировой рынок возобновляемой энергетики продолжит успешное развитие, и к 2020 году доля возобновляемых источников энергии в производстве электроэнергии в Европе составит около 20%, а доля ветровой энергии в производстве электрической энергии в мире – около 10%.

  1. Использование возобновляемых источников энергии в России

Россия занимает одно из ведущих мест в мировой системе оборота энергоресурсов, активно участвует в мировой торговле ими и в международном сотрудничестве в этой сфере. Особенно значимы позиции страны на мировом рынке углеводородов. Вместе с тем страна практически не представлена на мировом рынке энергетики, основанной на возобновляемых источниках энергии.

Общая установленная мощность электрогенерирующих установок и электростанций, использующих возобновляемые источники энергии, в России в настоящее время не превышает 2 200 МВт.

С использованием возобновляемых источников энергии ежегодно вырабатывается не более 8,5 млрд. кВтч электрической энергии, что составляет менее 1% от общего объема производства электроэнергии. Доля возобновляемых источников энергии в общем объеме отпускаемой тепловой энергии составляет не более 3,9%.

Структура выработки энергии на базе возобновляемых источников энергии в России значительно отличается от общемировой. В России наиболее активно используются ресурсы тепловых электростанций на биомассе (доля в выработке электроэнергии – 62,1%, в выработке тепловой энергии – не менее 23% на ТЭС и 76,1% на котельные), в то время как общемировой уровень использования биоТЭС – 12%. При этом в России почти совсем не используются ресурсы ветро- и солнечной энергетики, зато около трети выработки электроэнергии приходится на малые ГЭС (против 6% в мире).

Мировой опыт показывает, что первоначальный толчок к развитию возобновляемой энергетики, особенно в странах, богатых традиционными источниками, должен быть дан государством. В России же никакой поддержки этом сектору энергетической отрасли практически не оказывается.

Возобновляемые источники энергии (ВИЭ) – это те ресурсы, которые человек может использовать, не причиняя вреда окружающей среде.

Энергетика, использующая возобновляемые источники, называется «альтернативной энергетикой» (в отношении традиционных источников – газа, нефтепродуктов, угля), что указывает на минимальный вред окружающей среде.

Преимущества использования возобновляемых источников энергии (ВИЭ) связаны с экологией, воспроизводимостью (неисчерпаемостью) ресурсов, а также с возможностями получения энергии в труднодоступных местах проживания населения.

К недостаткам энергетики на ВИЭ часто относят низкий КПД технологий выработки энергии на таких ресурсах (на текущий момент времени), недостаточность мощностей для промышленного потребления энергии, потребность в значительных территориях посева «зеленых агрокультур», наличие повышенного шумоуровня и виброуровня (для ветровой энергетики), а также сложности добычи редкоземельных металлов (для солнечной энергетики).

Применение возобновляемых источников энергии, связано с местными возобновляемыми ресурсами и государственной политикой.

Успешные примеры - это геотермальные станции, обеспечивающие энергией, отоплением и горячей водой города Исландии; «фермы» солнечных батарей в Калифорнии (США) и ОАЭ; «фермы» ветрогенерации в Германии, США и Португалии.

Для энергогенерации России, с учетом опыта использования, территорий, климата и обеспеченностью возобновляемыми источниками энергии, наиболее перспективными являются: гидростанции малой мощности, солнечная энергетика (особенно перспективна в ЮФО) и ветроэнергетика (Балтийское побережье, ЮФО).

Перспективный источник возобновляемой энергии, но требующий профессиональной технологической разработки - это бытовые отходы и газ метан, получаемый в местах их хранения.

До недавнего времени по целому ряду причин, прежде всего из-за огромных запасов традиционного энергетического сырья, вопросам развития использования возобновляемых источников энергии в энергетической политике России уделялось сравнительно мало внимания. В последние годы ситуация стала заметно меняться. Необходимость борьбы за лучшую экологию, новые возможности повышения качества жизни людей, участие в мировом развитии прогрессивных технологий, стремление повысить энергоэффективность экономического развития, логика международного сотрудничества – эти и другие соображения способствовали активизации национальных усилий по созданию более зеленой энергетики, движению к низкоуглеродной экономике.

Объем технически доступных ресурсов возобновляемых источников энергии в Российской Федерации составляет не менее 24 млрд. тонн условного топлива.

Возобновляемые источники энергии

В понятие возобновляемые источники энергии (ВИЭ) включаются следующие формы энергии: солнечная, геотермальная, ветровая, энергия морских волн, течений, приливов и океана, энергия биомассы, гидроэнергия, низкопотенциальная тепловая энергия и другие "новые" виды возобновляемой энергии.

Принято условно разделять ВИЭ на две группы:

Традиционные : гидравлическая энергия, преобразуемая в используемый вид энергии ГЭС мощностью более 30 МВт; энергия биомассы, используемая для получения тепла традиционными способами сжигания (дрова, торф и некоторые другие виды печного топлива); геотермальная энергия.
Нетрадиционные : солнечная, ветровая, энергия морских волн, течений, приливов и океана, гидравлическая энергия, преобразуемая в используемый вид энергии малыми и микроГЭС, энергия биомассы, не используемая для получения тепла традиционными методами, низкопотенциальная тепловая энергия и другие "новые" виды возобновляемой энергии.
Перспективы возобновляемой энергетики

В последние годы тенденция роста использования возобновляемых источников энергии (ВИЭ) становится достаточно явной. Проблемы развития ВИЭ обсуждаются на самом высоком уровне. Так на встрече на высшем уровне на Окинаве (июнь 2000) главы восьми государств, в том числе Президент России В. В. Путин, обсудили глобальные проблемы развития мирового сообщества и среди них проблему роли и места возобновляемых источников энергии. Было принято решение образовать рабочую группу для выработки рекомендаций по значительному развертыванию рынков возобновляемой энергетики. Практически во всех развитых странах формируются и реализуются программы развития ВИЭ.
Чем же вызван такой интерес к этой проблеме?

Говоря об этой тенденции, следует выделить один принципиально новый момент. До последнего времени в развитии энергетики прослеживалась четкая закономерность: развитие получали те направления энергетики, которые обеспечивали достаточно быстрый прямой экономический эффект. Связанные с этими направлениями социальные и экологические последствия рассматривались лишь как сопутствующие, и их роль в принятии решений была незначительной.

При таком подходе ВИЭ рассматривались лишь как энергоресурсы будущего, когда будут исчерпаны традиционные источники энергии или когда их добыча станет чрезвычайно дорогой и трудоемкой. Так как это будущее представлялось достаточно отдаленным (да и сейчас говорить серьезно об истощении потенциала традиционных энергоресурсов можно лишь с большой натяжкой), то использование ВИЭ представлялось достаточно интересной, но в современных условиях скорее экзотической, чем практической, задачей.

Ситуацию резко изменило осознание человечеством экологических пределов роста. Быстрый экспоненциальный рост негативных антропогенных воздействий на окружающую среду ведет к существенному ухудшению среды обитания человека. Поддержание этой среды в нормальном состоянии и возможность ее к самосохранению, становится одной из приоритетных целей жизнедеятельности общества. В этих условиях прежние, только узко экономические оценки различных направлений техники, технологии, хозяйствования, становятся явно недостаточными, ибо они не учитывают социальные и экологические аспекты.

Импульсом для интенсивного развития ВИЭ впервые стали не перспективные экономические выкладки, а общественный нажим, основанный на экологических требованиях. Мнение о том, что использование ВИЭ существенно улучшит экологическую обстановку в мире, - вот основа этого нажима.

Экономический потенциал возобновляемых источников энергии в мире в настоящее время оценивается в 20 млрд. т.у.т. в год, что в два раза превышает объем годовой добычи всех видов ископаемого топлива. И это обстоятельство указывает путь развития энергетики ближайшего будущего.

Основное преимущество возобновляемых источников энергии - неисчерпаемость и экологическая чистота. Их использование не изменяет энергетический баланс планеты. Эти качества и послужили причиной бурного развития возобновляемой энергетики за рубежом и весьма оптимистических прогнозов их развития в ближайшем десятилетии.

По оценке Американского общества инженеров-электриков, если в 1980 г. доля производимой электроэнергии на ВИЭ в мире составляла 1%, то к 2005 г. она достигнет 5%, к 2020 - 13% и к 2060 г. - 33%. По данным Министерства энергетики США, в этой стране к 2020 г. объем производства электроэнергии на базе ВИЭ может возрасти с 11 до 22%. В странах Европейского Союза планируется увеличение доли использования для производства тепловой и электрической энергии с 6% (1996) до 12% (2010). Исходная ситуация в странах ЕС различна. И если в Дании доля использования ВИЭ в 2000 г. достигла 10%, то Нидерланды планируют увеличить долю ВИЭ с 3% в 2000 г. до 10% в 2020 г. Основной результат в общей картине определяет Германия, в которой планируется увеличить долю ВИЭ с 5,9% в 2000 г. до 12% в 2010 г. в основном за счет энергии ветра, солнца и биомассы.

Можно выделить пять основных причин, обусловивших развитие ВИЭ:

· обеспечение энергетической безопасности;
· сохранение окружающей среды и обеспечение экологической безопасности;
· завоевание мировых рынков ВИЭ, особенно в развивающихся странах;
· сохранение запасов собственных энергоресурсов для будущих поколений;
· увеличение потребления сырья для неэнергетического использования топлива.

Масштабы роста использования ВИЭ в мире на ближайшие 10 лет представлены в табл. 1. Чтобы ощутить масштаб цифр, укажем, что электрическая мощность электростанций на возобновляемых источниках энергии (без крупных ГЭС) составит 380-390 ГВт, что превышает мощность всех электростанций России (215 ГВт) в 1,8 раза.

Таблица 1

Вид оборудования или технологии

2000 г.

2010 г.

Фотоэлектричество

0,938 (0,26)

Ветроустановки, подключенные к сети

Малые ГЭС

Электростанции на биомассе

Солнечные термодинамические станции

Геотермальные станции

380,9 - 392,45

Геотермальные тепловые станции и установки, ГВт

Солнечные коллекторы и системы,


На территории России сосредоточено 45% мировых запасов природного газа, 13% - нефти, 23% - угля, 14% - урана. Такие запасы топливно-энергетических ресурсов могут обеспечить потребности страны в тепловой и электрической энергии в течение сотен лет. Однако фактическое их использование обусловлено существенными трудностями и опасностями, не обеспечивает потребности многих регионов в энергии, связано с безвозвратными потерями топливно-энергетических ресурсов (до 50%), угрожает экологической катастрофой в местах добычи и производства топливно-энергетических ресурсов. Природа может не выдержать такого испытания. Около 22-25 млн. человек проживают в районах автономного энергоснабжения или ненадежного централизованного энергоснабжения, занимающих более 70% территории России.

Экономический потенциал ВИЭ на территории России, выраженный в тоннах условного топлива (т.у.т.), составляет по видам источников: энергия Солнца - 12,5 млн., энергия ветра - 10 млн., тепло Земли - 115 млн., энергия биомассы - 35 млн., энергия малых рек - 65 млн., энергия низкопотенциальных источников тепла - 31.5,млн., всего - 270 млн. т.у.т.

Эти источники по объему составляют примерно 30% от объема потребления топливно-энергетических ресурсов в России, составляющего 916 млн. т.у.т. в год, что создает благоприятные перспективы решения энергетических, социальных и экологических проблем в будущем.

Особенностью современного состояния научно-технических разработок и практического использования ВИЭ является пока еще более высокая стоимость получаемой энергии (тепловой и электрической) по сравнению с энергией, получаемой на крупных традиционных электростанциях. Но актуальность данного вопроса не исчезает. В России имеются обширные районы, где по экономическим, экологическим и социальным условиям целесообразно приоритетное развитие возобновляемой энергетики, в том числе нетрадиционной и малой. К ним относятся:

  • зоны децентрализованного энергоснабжения с низкой плотностью населения, в первую очередь, районы Крайнего Севера и приравненные к ним территории;
  • зоны централизованного энергоснабжения с большим дефицитом мощности и значительными материальными потерями из-за частых отключений потребителей энергии;
  • города и места массового отдыха и лечения населения со сложной экологической обстановкой, что обусловлено вредными выбросами в атмосферу от промышленных и городских котельных, работающих на ископаемом топливе;
  • зоны с проблемами обеспечения энергией индивидуального жилья, фермерских хозяйств, мест сезонной работы, садово-огородных участков.
По сути, широкое использование возобновляемых источников энергии соответствует высшим приоритетам и задачам энергетической стратегии России.

К примеру, во многом энергетическая безопасность формируется на региональном уровне. Степень обеспеченности регионов собственными топливно-энергетическими ресурсами является одним из основных показателей восприимчивости регионов к угрозам энергетической безопасности. Освоение и использование местных энергетических ресурсов (гидроэнергетика малых рек, торф, небольшие месторождения углеводородных топлив и др.), а также использование других, в первую очередь возобновляемых, энергетических ресурсов (солнечная, ветровая, геотермальная энергия, энергия биомассы) позволят многие регионы страны перевести на энергообеспечение за счет ВИЭ, обеспечив их энергетическую независимость.

В некоторых областях использования ВИЭ Россия имеет крупные научные результаты, соответствующие мировому уровню. Выявлены большие потенциальные возможности использования этих источников энергии в решении энергетических и экологических проблем уже в ближайшем будущем.

Учебный год

Лекция 20

Энергосберегающие технологии и освоение новых источников энергии

Условно источники энергии можно поделить на два типа: невозобновляемые и возобновляемые . К первым относятся газ, нефть, уголь, уран и т. д. Технология получения и преобразования энергии из этих источников отработана, но, как правило, не экологична, и многие из них истощаются.

Возобновляемые источники энергии - это источники, которые по человеческим масштабам являются неисчерпаемыми. Основной принцип использования возобновляемой энергии заключается в её извлечении из природных ресурсов - таких как солнечный свет, ветер, движении воды в реках или морях, приливы, биотопливо и геотермальная теплота - которые являются возобновляемыми, т.е. пополняются естественным путем.

Перспективы использования возобновляемых источников энергии связаны с их экологической чистотой, низкой стоимостью эксплуатации и ожидаемым топливным дефицитом в традиционной энергетике.

Примеры использования возобновляемой энергии.

1.Ветроэнергетика является бурно развивающейся отраслью. Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров. Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10-12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Использование энергии ветра растет примерно на 30 процентов в год и широко используется в странах Европы и США.

2. На гидроэлектростанциях (ГЭС) в качестве источника энергии используется потенциальная энергия водного потока, первоисточником которой является Солнце, испаряющее воду, которая затем выпадает на возвышенностях в виде осадков и стекает вниз, формируя реки. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Также возможно использование кинетической энергии водного потока на так называемых свободнопоточных (бесплотинных) ГЭС.

Особенности этого источника энергии:

Себестоимость электроэнергии на ГЭС существенно ниже, чем на всех иных видах электростанций;

Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии;

Возобновляемый источник энергии;

Значительно меньше воздействует на воздушную среду, чем другие виды электростанций;


Строительство ГЭС обычно более капиталоёмкое;

Часто эффективные ГЭС удалены от потребителей;

Водохранилища часто занимают значительные территории;

Лидерами по выработке гидроэнергии на человека являются Норвегия, Исландия и Канада. Наиболее активное гидростроительство ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии, в этой же стране размещено до половины малых гидроэлектростанций мира.

3.Солнечная энергетика - направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии и является экологически чистой, то есть не производящей вредных отходов.

Способы получения электричества и тепла из солнечного излучения:

Получение электроэнергии с помощью фотоэлементов;

Преобразование солнечной энергии в электричество с помощью тепловых машин: паровые машины (поршневые или турбинные), использующие водяной пар, углекислый газ, пропан-бутан, фреоны;

Гелиотермальная энергетика - нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах);

Термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор);

Солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием), преимущество - запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.

Достоинства солнечной энергетики :

Общедоступность и неисчерпаемость источника;

Теоретически полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (характеристику отражательной способности) земной поверхности и привести к изменению климата.

Недостатки солнечной энергетики :

Зависимость от погоды и времени суток;

Как следствие необходимость аккумуляции энергии;

Высокая стоимость конструкции;

Необходимость периодической очистки отражающей поверхности от пыли;

Нагрев атмосферы над электростанцией.

4.Приливные электростанции . Электростанциями этого типа являются особым видом гидроэлектростанции, использующим энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды.

Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов). В последнем случае они называются гидроаккумулирующая электростанция.

Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками - высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в единой энергосистеме с другими типами электростанций.

5.Геотермальная энергетика - направление энергетики, основанное на производстве электрической и тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли, на геотермальных станциях. В вулканических районах циркулирующая вода перегревается выше температур кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла. Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении. Крупнейшей в мире геотермальной установкой является установка на гейзерах в Калифорнии, с номинальной мощностью 750 МВт.

6.Биотопливо - это топливо из биологического сырья, получаемое, как правило, в результате переработки биологических отходов. Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель), твёрдое биотопливо (дрова, брикеты,топливные гранулы, щепа, солома, лузга) и газообразное (биогаз, водород).

США и Бразилия производят 95 % мирового объёма биоэтанола. Этанол в Бразилии производится преимущественно из сахарного тростника, а в США из кукурузы. По оценкам Merrill Lynch прекращение производства биотоплив приведёт к росту цен на нефть и бензин на 15%.

Этанол является менее «энергоплотным» источником энергии чем бензин; пробег машин, работающих на Е85 (смесь 85 % этанола и 15 % бензина; буква «Е» от английского Ethanol), на единицу объёма топлива составляет примерно 75 % от пробега стандартных машин. Обычные машины не могут работать на Е85, хотя двигатели внутреннего сгорания прекрасно работают на Е10 (некоторые источники утверждают, что можно использовать даже Е15). На «настоящем» этаноле могут работать только т. н. «Flex-Fuel» машины («гибкотопливные» машины). Эти автомобили также могут работать на обычном бензине (небольшая добавка этанола всё же требуется) или на произвольной смеси того и другого. Бразилия является лидером в производстве и использовании биоэтанола из сахарного тростника в качестве топлива.

Критики развития биотопливной индустрии заявляют, что растущий спрос на биотопливо вынуждает сельхозпроизводителей сокращать посевные площади под продовольственными культурами и перераспределять их в пользу топливных. По расчётам экономистов из Университета Миннесоты, в результате биотопливного бума число голодающих на планете к 2025 году возрастёт до 1,2 млрд. человек.

С другой стороны, продовольственная и сельскохозяйственная организация ООН (FAO) в своем отчете говорит о том, что рост потребления биотоплив может помочь диверсифицировать сельскохозяйственную и лесную деятельность, способствуя экономическому развитию. Производство биотоплив позволит создать в развивающихся странах новые рабочие места, снизить зависимость развивающихся стран от импорта нефти. Кроме этого производство биотоплив позволит вовлечь в оборот ныне не используемые земли. Например, в Мозамбике сельское хозяйство ведётся на 4,3 млн. га из 63,5 млн. га потенциально пригодных земель. По оценкам Стэндфордского университета во всём мире из сельскохозяйственного оборота выведено 385-472 миллиона гектаров земли. Выращивание на этих землях сырья для производства биотоплив позволит увеличить долю биотоплив до 8 % в мировом энергетическом балансе. На транспорте доля биотоплив может составить от 10 % до 25 %.

7.Водородная энергетика - развивающаяся отрасль энергетики, направление выработки и потребления энергии человечеством, основанное на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями. Водород выбран как наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода наиболее высока, а продуктом сгорания в кислороде является вода (которая вновь вводится в оборот водородной энергетики).

Топливный элемент - электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне - в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе. Топливные элементы - это электрохимические устройства, которые могут иметь очень высокий коэффициент преобразования химической энергии в электрическую (~80 %). Обычно в низкотемпературных топливных элементах используются: водород со стороны анода и кислород на стороне катода (водородный элемент). В отличие от топливных элементов, одноразовые гальванические элементы содержат твердые реагенты, и когда электрохимическая реакция прекращается, должны быть заменены, электрически перезаряжены, чтобы запустить обратную химическую реакцию, или, теоретически, в них можно заменить электроды. В топливном элементе реагенты втекают, продукты реакции вытекают, и реакция может протекать так долго, как поступают в нее реагенты и сохраняется работоспособность самого элемента. Топливные элементы не могут хранить электрическую энергию, как гальванические или аккумуляторные батареи, но для некоторых применений, таких как работающие изолированно от электрической системы электростанции, использующие непостоянные источники энергии (солнце, ветер), они совместно с электролизёрами, компрессорами и ёмкостями для хранения топлива (например, баллоны для водорода), образуют устройство для хранения энергии. Общий КПД такой установки (преобразование электрической энергии в водород, и обратно в электрическую энергию) 30-40 %.

Топливные элементы обладают рядом ценных качеств, среди которых:

7.1 Высокий КПД : у топливных элементов нет жёсткого ограничения на КПД, как у тепловых машин. Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42 %, чаще же составляет порядка 35-38 %. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80 %.

7.2Экологичность . В воздух выделяется лишь водяной пар, что является безвредным для окружающей среды. Но это лишь в локальном масштабе. Нужно учитывать экологичность в тех местах, где производятся данные топливные ячейки, так как производство их само по себе уже составляет некую угрозу.

7.3 Компактные размеры . Топливные элементы легче и занимают меньший размер, чем традиционные источники питания. Топливные элементы производят меньше шума, меньше нагреваются, более эффективны с точки зрения потребления топлива. Это становится особенно актуальным в военных приложениях.

Проблемы топливных элементов .

Внедрению топливных элементов на транспорте мешает отсутствие водородной инфраструктуры. Возникает проблема «курицы и яйца» - зачем производить водородные автомобили, если нет инфраструктуры? Зачем строить водородную инфраструктуру, если нет водородного транспорта? Топливные элементы, в силу низкой скорости химических реакций, обладают значительной инертностью и для работы в условиях пиковых или импульсных нагрузок требуют определённого запаса мощности или применения других технических решений (сверхконденсаторы, аккумуляторные батареи). Также существует проблема получения водорода и хранения водорода. Во-первых, он должен быть достаточно чистый, чтобы не произошло быстрого отравления катализатора, во-вторых, достаточно дешёвый, чтобы его стоимость была рентабельна для конечного потребителя.

Существует множество способов производства водорода, но в настоящее время около 50 % водорода, производимого во всём мире, получают из природного газа. Все остальные способы пока дорогостоящи. Существует мнение, что с ростом цен на энергоносители стоимость водорода также растёт, так как он является вторичным энергоносителем. Но себестоимость энергии, производимой из возобновляемых источников, постоянно снижается.

Статьи по теме: