Аккумулирование горячей воды. Аккумулирование тепла: за этим — будущее

Классификация аккумуляторов тепла

В соответствии с принятыми выше определениями и выводами можно провести классификацию аккумуляторов тепла.

Аккумулирующая и теплообменная среды.

Прямое аккумулирование: аккумулирующей и теплообменной является одна и та же среда. Аккумулирующая среда может быть твердой, жидкой, газообразной или двухфазной (жидкость плюс газ).

Косвенное аккумулирование: энергия аккумулируется только посредством теплообмена (например, теплопроводностью через стенки резервуара) либо в результате массообмена специальной теплообменной среды в жидком, двухфазном или газообразном состоянии). Собственно аккумулирующая среда может быть твердой, жидкой или газообразной (процесс может протекать без фазового перехода, с фазовым переходом твердое тело - твердое тело, твердое тело - жидкость или жидкость - пар).Здесь теплообменная среда мало участвует в аккумуляции.

Полупрямое аккумулирование: процесс протекает как в предыдущем случае, за исключением того, что аккумулирующая емкость теплообменной среды играет более важную роль.

Сорбционное аккумулирование: в этом случае используется способность некоторых аккумулирующих сред абсорбировать газы с выделением тепла (и поглощением тепла при десорбции газа). Передача энергии может происходить непосредственно в форме тепла или с помощью газа

Масса аккумулирующей среды.

Постоянная масса. Обычно это случай косвенного аккумулирования. Однако может иметь место и прямое аккумулирование, если перемещаемая часть массы после охлаждения (при разрядке) или нагрева (при зарядке) полностью возвращается в аккумулятор (вытеснительное аккумулирование).

На практике не применяются конструктивно сложные виды аккумуляторов, такие или пневматические, с тепловыми насосами и другие.

Наиболее приемлемы системы прямого и полупрямого аккумулирования в активных системах и косвенного в пассивных системах отопления.

Системы аккумулирования тепловой энергии

Для выполнения своих функций аккумулирующая система должна иметь помимо аккумулирующих сосудов и их внутренних устройств также и внешнее оборудование. При тепловом аккумулировании для зарядки и разрядки могут понадобиться насосы, теплообменники, испарители, клапаны, трубопроводы.

Основные типы аккумуляторов:

· Баки - аккумуляторы.

· Солнечные бассейны.

· С фазовым переходом

· Гравийные и водо-воздушные

· Монолитные стены.

Типичная схема активной системы теплоснабжения с тепловым аккумулированием энергии для получения горячей воды (рис. 3.2.) включает первичный контур на антифризе, теплообменник в нижней части аккумулирующего бака и дополнительный нагреватель в верхней его части. Так как эффективность солнечного коллектора снижается с увеличением разности температур первичного контура и окружающей среды, температуру первичного контура следует поддерживать на возможно более низком уровне. Для этого следует обеспечить небольшой перепад температур в теплообменнике, воспрепятствовать перемешиванию в баке и обеспечить подвод тепла только в самую холодную часть бака.

Рис.3.2.Схема получения горячей воды для бытовых нужд с использованием солнечной энергии:

1 - солнечные коллекторы; 2 - первичный цикл (антифриз); 3 - циркуляционный насос; 4 - аккумулирующий бак; 5 - солнечный теплообменник; 6 - подача холодной воды; 7 - дополнительный нагреватель; 8 - линия подачи.

Баки - аккумуляторы

Выбор соотношения между размерами солнечного коллектора и бака-аккумулятора для кратковременного (горячая бытовая вода) и долговременного (обогрев) аккумулирования - интересная оптимизационная задача. Общий оптимум получается, когда оптимальны характеристики, как коллектора, так и аккумулятора. Удельные емкости аккумуляторов для кратковременного аккумулирования обычно составляют 50-100 кг воды на 1 м2 площади коллектора, а для долговременного аккумулирования в климатических условиях.

Центральной Европы необходимы значения удельной емкости 1000 кг/м2.

Солнечный бассейн, где коллектор и аккумулятор совмещены, является частным случаем аккумулирования с использованием горячего теплоносителя. Солнечная радиация поглощается донной поверхностью бассейна. В теплоносителе создается и поддерживается градиент концентрации соли (концентрация увеличивается с глубиной) между верхним конвективным слоем (под действием ветра) и нижним конвективным слоем (в результате отвода тепла). Благодаря этому конвекция и связанный с ней теплоотвод к поверхности подавляются, и слой толщиной ~ 1 м, в котором нет конвекции, служит тепловой изоляцией.

Таким способом можно достичь температуры воды 100°С, а 90°С является обычным расчетным значением в зонах с жарким климатом.

Рис.3.3.

1 -поверхностный слой воды; 2 - поверхность земли; 3 - выход горячего соляного раствора к потребителю тепла или к теплообменнику; 4 - конвективная (аккумулирующая) область; 5 -возврат холодного соляного раствора; 6 - неконвективный (изолирующий) слой.

Аккумуляторы с фазовым переходом.

Были предложены и разработаны системы аккумулирования на основе использования теплоты фазового перехода для зарядки и разрядки воздухом (рис. 3.4.) или водой (рис 3.5.).

На рис. 3.4. показан вариант теплообменника с оребренными кольцевыми каналами с раздельными контурами зарядной и разрядной сред. Таким образом, теплообменник позволяет проводить одновременно зарядку и разрядку. Каждый теплообменный элемент состоит из внутренней и наружной трубок, тепловой контакт между которыми обеспечивается продольными ребрами из материала с хорошей теплопроводностью (например, алюминия). Кольцевое пространство между ребрами заполнено материалом, аккумулирующим энергию фазового перехода (равную теплоте плавления). В этом варианте система теплового аккумулирования работает как гибридный аккумулятор, в котором используются теплота фазового перехода и теплота нагрева рабочего тела.

Рис.3.4.

Рис.3.5.Агрегат CALMAC для аккумулирования теплоты фазового перехода на Na2S2O3-5H2O или MgCl2-6H2O:

1 - съемная крышка; 2 - двигатель для перемешивания; 3 - вход воды; 4 - гидрат соли; 5 - пластиковый теплообменник; 6 - бак; 7 - выход воды.

Рис.3.6.

1 - элемент теплообменного блока: 2 - термоаккумулирующее вещество; 3 - продольное ребро; 4 - горячий теплоноситель; 5 - резервуар (кожух); 5 - холодный теплоноситель для разрядки.

Гравийные аккумуляторы

Галечный аккумулятор теплоты (рис. 3.7.). В солнечных воздушных системах теплоснабжения обычно применяются галечные аккумуляторы теплоты, представляющие собой емкости круглого или прямоугольного сечения, содержащие гальку размером 20--50 мм в виде насадки из плотного слоя частиц. Аккумуляторы этого типа обладают рядом достоинств, но по сравнению с водяным аккумулятором в этом случае требуется больший объем. Галечный аккумулятор может располагаться вертикально или горизонтально.

Горячий воздух, поступающий днем из солнечной коллектора в аккумулятор, отдает гальке свою теплоту и таким образом происходит зарядка аккумулятора. При разрядке аккумулятора ночью или в ненастную погоду воздух движется в обратном направлении и отводит теп лоту к потребителю.

При одинаковой энергоемкости объем галечного акккумулятора теплоты в 3 раза больше объема водяного бака-аккумулятора

Рис.3.7.Общий вид галечного аккумулятора:

1-крышка, 2-бункер, 3-бетонный блок, 4-теплоизоляция, 5-сетка, 6-галька

Мнолитные стены используются преимущественно в системах пассивного отопления и рассмотрены ниже.

Дмитрий Белкин

Утепление частного дома. Часть 3

Аккумулирование тепла - залог комфорта в жилище

Итак, в прошлой статье мы рассматривали разные строительные материалы, из которых мы могли бы построить наш дом. Однако, вопроса тепла в доме мы коснулись очень и очень поверхностно. Таким образом, теоретическая часть еще не закончена! Она в самом разгаре! В этой статье я постараюсь доступно рассказать о более серьезных вопросах теплоизоляции жилища. Кстати говоря, в процессе изложения я опять слишком вольно обращался с терминами. Давайте договоримся, что утепление - это набор мер по повышению температуры в помещении, то есть, например, устройство отопления, а теплоизоляция - набор мер по снижению теплопередачи строительных конструкций. Таким образом, предметом этой статьи будет именно теплоизоляция. Причем, теплоизоляция нужна только там, где устроено отопление, поскольку затрудняет выход тепла наружу, и совершенно не защищает от холода, как некоторые думают.

При строительстве теплого дома нужно иметь в виду, что отдельно стоящий дом теряет через стены по разным оценкам всего от 30 до 40 процентов тепла. Это значит, что, если дом уже построен и его характеристики по сохранению тепла вас не удовлетворяют, то дополнительная теплоизоляция стен может и не помочь. В первую очередь, теплоизолировать нужно стены, имеющие недостаточно малую теплопередачу, например, построенные из материалов с высокой теплопроводностью (силикатный кирпич, цементные или бетонные блоки), или стены, имеющие недостаточную толщину. Так, если у вас холодный дом, построенный из дерева, то такие стены достаточно просто проконопатить по-аккуратнее, а если вы живете в холодном доме из пенобетонных или керамзитобетонных блоков, то стоит в первую очередь направить средства на теплоизоляцию потолков и окон.

Теперь затронем основной вопрос этой статьи, а именно процесс накопления тепла стенами. Представим себе ситуацию, когда внутри нашего помещения температура плюсовая, а снаружи минусовая. Таким образом можем считать, что наша стена разделяет две среды с разными температурами. При этом, как мы только что договорились, теплый воздух стремится выйти наружу. Здравый смысл говорит нам, что, если одна поверхность стены имеет температуру, например -20, а вторая поверхность, напротив, имеет температуру + 20, то где-то должен быть и ноль. Судя по всему, при наших условиях этот ноль градусов находится внутри стены.

Для простоты, давайте считать, что ровно посередине. В свою очередь, это значит, что половина стены, в наших условиях, имеет температуру выше нуля. Предположим, затем, что наша стена весит тонну. Следовательно, половина стены весит ровно половину тонны. Самое приятное, что между этой теплой половиной стены и воздухом в комнате происходит процесс теплопередачи, и, если мы удалим весь теплый воздух из нашего помещения, откроем форточку, например, то после закрытия форточки более теплая стена будет отдавать воздуху свое накопленное тепло, притом, тепла будет отдано тем больше, чем будет тяжелее стена и, соответственно, больше сохраненная ей энергия.

Я надеюсь, что теперь понятно, что теплоизоляция внешней стороны стены значительно более предпочтительна, чем теплоизоляция внутри помещения. Действительно, внешняя теплоизоляция смещает ноль градусов по направлению к внешнему краю стены, увеличивая массу теплой части стены, в то время как теплоизоляция внутренней части стены напротив, не дает ей нагреваться и аккумулировать тепло. Помещение с внутренней теплоизоляцией характерно тем, что очень быстро нагревается и так же быстро выветривается при открытой форточке. Тепло-то ведь стенами не накоплено!

Конечно, говорить об аккумулировании тепла внешними стенами мы можем с известной долей условности. Дело в том, что физика процесса теплопередачи говорит, что внешняя стена всегда отдает тепло, а это значит, что и тепло она не аккумулирует, поскольку постоянно его тратит. Это как аккумулятор, который мы постоянно заряжаем, и к которому подключена куча лампочек, которые его постоянно разряжают. Понимаете аналогию? При выключении тока заряда лампочки очень быстро разрядят аккумулятор, просто этот процесс будет не мгновенный и все. Чтобы замедлить процесс разрядки надо повысить емкость аккумулятора, а в случае со стеной нужно увеличивать ее толщину.

Действительно аккумулируют тепло только внутренние стены и массивные предметы, находящиеся в помещении.

Резюме

При устройстве теплого дома нужно следить за тем, чтобы в помещении присутствовали достаточно тяжелые объекты, которые накапливали бы тепло. Это может быть стена, причем внутренняя стена накапливает тепло значительно интенсивнее, чем внешняя, ведь внутренняя стена имеет комнатную температуру по всей толщине! Это может быть монолитная колонна, или нечто не менее тяжелое. Напоминаю, что самым крутым аккумулятором тепла у наших предков, да кое-где и у нас служит кирпичная печь. Вспоминаю, как мы с друзьями топили русскую печь на даче, и она все не грелась, и не грелась, не смотря на то, что огонь просто бушевал в ней, и дров мы потратили огромное количество. Мы так и легли спать в холоде. Зато проснулись под утро от жары. Причем печь накопила столько тепла, что в этот уикенд мы ее больше и не топили. Мы уехали по домам, а она все еще была теплая. Так, если у вас в доме внутреннее утепление и легкие стены, например, из гипсокартона, то есть смысл не экономить на перегородках, и сделать их монолитными.

При устройстве внутренней теплоизоляции ни в коем случае нельзя прокладывать трубы отопления и, особенно водопровода между стеной и теплоизоляцией. Если в случае с отоплением вам грозит только увеличение сумм в счетах за горючее, то водопровод может и замерзнуть!

ВНИМАНИЕ!!! Личный опыт!

Один мой знакомый (сосед) купил деревянный дом. Причем в первую же зиму выяснилось, что рабочие сэкономили на пакле. Короче говоря, вообще ее не положили. Дело осложнялось еще тем, что брусья были пригнаны довольно плотно и нормально проконопатить дом не представлялось возможным. Я предложил соседу утеплить дом снаружи минеральной ватой. Так он и сделал. Кроме того, он устроил в своем доме и внутреннюю теплоизоляцию из пенопласта толщиной 3 см. Затем стены с внутренней стороны были покрыты гипсокартоном в один слой. В итоге, как ни странно, даже в самый сильный мороз в доме не закрывается форточка, а батареи отопления никогда не нагреваются выше 60 градусов. Справедливости ради хочу отметить, что окна использованы с двухкамерными стеклопакетами, а под форточкой имеется в виду маленькая щелка в откидной части окна. Отопление сделано с использованием циркуляционного насоса, что не мало важно!

Вот, пожалуйста! Перед вами случай, когда теория расходится с практикой. Получается, что один жалкий слой гипсокартона делает жилище очень даже комфортным. Я неоднократно предлагал соседу просверлить дырку в его гипсокартоне и сунуть в эту дырку градусник, чтобы проверить вышеизложенную теорию, но он, почему-то, отказывается.

Ну, конечно, теория с практикой расходиться не может. Если говорить серьезно, то можно придумать причины, почему в доме сухо и комфортно. Например, можно предположить, что в этом доме батареи отопления мощнее, чем надо. Может быть комнаты не слишком велики по объему воздуха, может быть хватает акумулированного тепла в потолке или внутренних стенах? В конце концов окна и форточки в мороз никто настеж не распахивал, и, самое интересное, что никто это делать и не собирается! Короче говоря, вот вам факты, а они, как известно - упрямые вещи!

В следующей статье я рассмотрю вопросы влажности воздуха в помещении.

Статус рассмотрения проекта Координационным Советом: Не рассматривался . Объекты внедрения: Промышленность , Некапитальные, легковозводимые временные сооружения, в т.ч. торговые , Учреждения социальной сферы (школы, больницы, детские сады и т.д.) , Административные и общественно-бытовые здания и сооружения . Эффект от внедрения:
- для объекта: повышение тепловой устойчивости зданий, снижение платы за потребленную энергию в соответствии с двухзоновым тарифным коэффициентом;
- для муниципального образования: снижение потерь электроэнергии в энергосистеме, упрощение управления мощностями в энергосистеме, повышение тепловой устойчивости зданий.

Аккумулирование тепла позволяет: повысить теплоустойчивость зданий, повысить КПД автономных источников электроэнергии, обеспечить простую схему возврата тепловой энергии стоков, снизить стоимость электрообогрева как производственных площадей, так и отдельных квартир, в которых устанавливаются ТЕПЛОНАКОПИТЕЛИ.

Тепловой аккумулятор в сравнении с другими аккумуляторами обладает следующими преимуществами: простота устройства, относительно низкая себестоимость, эффективные массогабаритные характеристики, долговечность.

Теплоаккумуляторы применяются для:

  • повышения тепловой устойчивости зданий;
  • повышения КПД автономных источников электроэнергии;
  • возврата тепловой энергии стоков;
  • обогрева помещений.

ПОВЫШЕНИЕ ТЕПЛОВОЙ УСТОЙЧИВОСТИ ЗДАНИЙ

В условиях аварий на теплоцентралях и тепловых сетях или плановых отключений важным фактором является тепловая устойчивость зданий, к которым прекращена подача тепла. Тепловой устойчивостью здания (помещения) принято понимать способность здания сохранять накопленное тепло в течение определенного времени (которого может стать недостаточно для ликвидации аварий) при изменяющихся тепловых воздействиях. Оборудование зданий теплоаккумулятором позволяет повысить его тепловую устойчивость, т.е. дать дополнительное время для устранения аварии. Теплоаккумуляторы можно устанавливать в уже существующих зданиях, но разработка теплоаккумуляторов на стадии проектирования нового строительства позволит более успешно решить задачу тепловой устойчивости зданий.

Размещение теплоаккумулятора в существующих подвалах затруднительно вследствие дефицита пространства. В арсенале технологий имеются разработки с достаточно эффективными массогабаритными параметрами.

Тепло, накопленное и сохраняемое в теплоаккумуляторе, в случае преднамеренного или аварийного отключения подачи тепла в здание, будет поддерживать приемлемую температуру в здании в течение более продолжительного времени, что облегчит проведение мероприятий по устранению аварии или решению иных задач.

ПОВЫШЕНИЕ КПД АВТОНОМНЫХ ИСТОЧНИКОВ ЭЛЕКТРОЭНЕРГИИ

Известно, что КПД бензо-, дизельагрегатов и газо-поршневых (в т.ч. на природном газе) электростанций сравнительно невелик (25-30%). Особенно он мал при недогрузке мощности электростанции.

При наличии теплоаккумулятора вся тепловая энергия электростанции используется для его зарядки. Избыток электроэнергии также направляется в теплоаккумулятор. Т.о. КПД автономного источника становится соизмеримым с КПД котла (порядка 85%), а стоимость электроэнергии, получаемой на такой электростанции, будет в несколько раз ниже сетевой.

Такое решение пригодно как для организаций, устраняющих аварии, так и для любого автономного потребителя (отдельно стоящий коттедж, дом, подъезд в доме, гараж и т.д.)

ВОЗВРАТ ТЕПЛОВОЙ ЭНЕРГИИ СТОКОВ

Установка теплоаккумуляторов позволяет решить и некоторые задачи энергосбережения. Так, установка тепловых насосов в системе канализационных стоков и закачка утилизированной энергии в теплоаккумулятор, позволит частично вернуть потери тепла, связанные со сбросом теплой воды в канализацию.

ОБОГРЕВ ПОМЕЩЕНИЙ С ПРИМЕНЕНИЕМ ТЕПЛОНАКОПИТЕЛЕЙ

Существующее положение о тарифном регулировании предусматривает значительно более низкий тариф на электроэнергию, потребляемую в ночное время по сравнению с дневным, что связано с необходимостью выравнивания графиков потребления электроэнергии и что важно для нормальной работы единой энергетической системы. Это позволяет пропорционально снизить затраты на обогрев помещения, но требует установки теплоаккумулирующих нагревательных приборов.

Затраты на установку теплонакопителей окупаются в среднем за 2-3 года за счет более дешевой стоимости 1 кВт. ч.

Хозяйствующие субъекты, использующие теплонакопители в широких масштабах, т.е. являющиеся потребителями большого количества электроэнергии, могут самостоятельно приобретать энергию на ФОРЭМе, где она обходится значительно дешевле.

Компании, внедряющие данную технологию / оказывающие данную услугу:

Повышение уровня централизации теплоснабжения (что характерно для крупных городов) сопровождается двумя опасными рисками - риском серьезного аварийного нарушения процесса теплоснабжения и риском затяжного (сверх допустимого) времени обнаружения и устранения аварий и неисправностей.

Опыт эксплуатации московских систем теплоснабжения показал, что ежегодно на 100 км двухтрубных тепловых сетей приходится от 20 до 40 сквозных повреждений труб, из них 90% случаются на подающих трубопроводах. Среднее время восстановления поврежденного участка теплосети при этом (в зависимости от диаметра и конструкции его) составляет от 5 до 50 ч и более, а полное восстановление повреждения может потребовать несколько суток (табл. 1).

Таблица 1. Среднее время восстановления z р, ч, поврежденного участка тепловой сети

Диаметр труб d, м

Расстояние между секционирующими задвижками l, км

Среднее время восстановления z р, ч

Время z p , ч, необходимое для восстановления поврежденного участка магистральной тепловой сети с диаметром труб d, м, и расстоянием между секционирующими задвижками l, км, можно рассчитать также по следующей эмпирической формуле:

Конечно, ждать несколько суток или даже часов в зимних условиях и не предпринимать мер к спасению положения совершенно недопустимо. Поэтому практика эксплуатации систем ЦТ и жилищного фонда выработала важное правило предварительной оценки аварийных ситуаций с учетом теплоаккумуляционных возможностей различных зданий при различных текущих наружных температурах отопительного сезона. Вот это правило:

При подготовке к отопительному периоду рекомендуется теплоснабжающим организациям с привлечением собственников жилых домов или уполномоченных ими организаций-исполнителей коммунальных услуг выполнить расчеты допустимого времени устранения аварий и восстановления теплоснабжения по методике, приведенной в Указаниях по повышению надежности систем коммунального теплоснабжения, разработанных АКХ им. К. Д. Памфилова и утвержденных ОАО «Роскоммунэнерго» 26.06.89, и в рекомендациях СНиП 41-02-2003.

Расчеты следует представить органам управления жилищно-коммунальным хозяйством для использования при подготовке к зиме объектов жилищного фонда.

Эта методика опирается на практический опыт и исследования эксплуатации городского фонда, в условиях нарушенного (прекращения) теплоснабжения жилых строений и промышленных зданий с оценкой темпа падения температуры, °С/ч, в отапливаемых помещениях при различных температурах наружного воздуха.

Линия падения внутренней температуры отапливаемых помещений во времени при этом носит экспоненциальный (нисподающий) характер (рис. 1) и зависит в первую очередь от конструктивных характеристик зданий (конструкции и материала стен и утеплителей, коэффициента остекления, расположения помещений в здании и др.), определяющих аккумуляционную способность строений, а также климатических условий размещения объектов.

Рисунок 1. Линии падения температуры внутреннего воздуха (------) и внутренней поверхности наружной стены (- - - - -) здания после отключения отопления

Примерные кривые изменения температуры внутреннего воздуха при включении отопления - натопе показаны на рис. 2.

Рисунок 2. Кривые изменения температуры внутреннего воздуха и внутренней поверхности наружной стены при включении отопления - натопе

Эмпирически удалось вычислить примерные коэффициенты аккумуляции зданий, темпы падения внутренней температуры и разработать методику расчета, основные положения которой рассмотрим подробнее.

Замораживание трубопроводов в подвалах, лестничных клетках и на чердаках зданий может произойти в случае прекращения подачи теплоты при снижении температуры воздуха внутри жилых помещений до 8 °С и ниже. Примерный темп падения температуры в отапливаемых помещениях (°С/ч) при полном отключении подачи теплоты приведен в табл. 2, по нему определены коэффициенты аккумуляции зданий.

Таблица 2. Темпы падения внутренней температуры здания при различных температурах наружного воздуха

Коэффициент аккумуляции, ч

Темп падения температуры, °С/ч, при температуре наружного воздуха, °С

±0

-10

-20

-30

Коэффициент аккумуляции характеризует величину тепловой аккумуляции зданий и зависит от толщины стен, коэффициента теплопередачи и коэффициента остекления. Коэффициенты аккумуляции теплоты для жилых и промышленных зданий массового строительства приведены в табл. 3.

Таблица 3. Коэффициенты аккумуляции для зданий типового строительства

Характеристика зданий

Помещения

Коэффициент аккумуляции, ч

1

2

3

1. Крупнопанельный дом серии 1-605А с трехслойными наружными стенами, с утепленными минераловатными плитами с железобетонными фактурными слоями (толщина стены 21 см, из них толщина утеплителя 12 см)

верхнего этажа

среднего и первого этажей

2. Крупнопанельный жилой дом серии К7-3 (конструкции инж. Лагутенко) с наружными стенами толщиной 16 см, с утепленными минераловатными плитами с железобетонными фактурными слоями

верхнего этажа

среднего этажа

3. Дом из объемных элементов с наружными ограждениями из железобетонных вибропрокатных элементов, утепленных минераловатными плитами. Толщина наружной стены 22 см, толщина слоя утеплителя в зоне стыкования с ребрами 5 см, между ребрами 7 см. Общая толщина железобетонных элементов между ребрами 30-40 мм

Угловые верхнего этажа

4. Кирпичные жилые здания с толщиной стен в 2,5 кирпича и коэффициентом остекления 0,18-0,25

5. Промышленные здания с незначительными внутренними тепловыделениями (стены в 2 кирпича, коэффициент остекления 0,15-0,3)

На основании приведенных данных можно оценить время, имеющееся для ликвидации аварии или принятия мер по предотвращению лавинообразного развития аварий, т.е. замерзания теплоносителя в системах отопления зданий, в которые прекращена подача теплоты.

Если в результате аварии отключено несколько зданий, то определение времени, имеющегося в распоряжении на ликвидацию аварии или принятия мер по предотвращению развития аварии, производится по зданию, имеющему наименьший коэффициент аккумуляции.

Рассмотрим такой случай на конкретном примере.

ПРИМЕР 1. Исходные условия: В результате аварии на распределительной теплосети диаметром 300 мм отключен ЦТП с группой жилых зданий, среди которых имеется крупнопанельный жилой дом конструкции инж. Лагутенко. Температура наружного воздуха - 20 °С.

Требуется: Определить допустимое время устранения аварии на распределительной теплосети при указанной наружной температуре и оценить сложившуюся ситуацию.

Решение: 1. По табл. 3 по п. 2 определяем коэффициент аккумуляции здания по среднему этажу: он равен 40 ч.

2. По табл. 2 для здания с коэффициентом аккумуляции 40 ч находим темп падения температуры (°С/ч) при температуре наружного воздуха -20 °С: он равен 1,1 °С/ч.

3. Определяем время снижения температуры в квартирах с 20 до 8 °С, при которой в подвалах и на лестничных клетках может произойти замерзание теплоносителя в трубах: (20 - 8): 1,1 = 10,9 ч ≈ 11 ч.

4. По табл. 1 находим, что для теплосети диаметром 300 мм время устранения аварии составляет от 5 до 10 ч (без учета времени обнаружения места аварии).

5. Для оценки ситуации можно сделать следующие выводы:

5.1. Время устранения аварии допустимо до 10 ч и при хорошей организации работы аварийной службы опорожнения системы отопления и других систем указанного жилого дома не потребуется, так как теплоснабжение микрорайона будет восстановлено.

5.2. При отсутствии аварийной службы или плохой организации работ по обнаружению и устранению аварийного повреждения теплосети персоналу ЖКХ необходимо в течение 10 ч произвести спуск систем отопления, горячего и холодного водоснабжения не только указанного жилого дома, но и всех других отключенных домов и строений, а в дальнейшем и отключенного участка теплосети, ЦТП и ИТП, во избежание замораживания их и цепочного, лавиноообразного развития аварии, могущих вызвать тяжелые последствия. По сообщениям «Строительной газеты» (№ 49, 50 за 2003 г.) 1 января 2003 г. в пос. Аркуль Нолинского района Кировской обл. в результате падения дерева на высоковольтную ЛЭП произошло аварийное отключение энергоснабжения поселка, в том числе и котельных. По трагическому совпадению в то время, когда перестали работать циркуляционные насосы в котельных и прекратилась циркуляция воды во всех теплосистемах поселка, температура воздуха понизилась от -1 °С до - 24 °С. Из-за отсутствия противоаварийного плана и инструкций персоналу вода на некоторых участках теплотрасс и тепловых системах зданий не была своевременно слита, к тому же не все абоненты котельных были оповещены об аварии (детсад, аптека, общежитие, медицинская лаборатория и др.). Все это привело к замораживанию теплотрасс и теплосистем 14 жилых зданий. В результате было повреждено и уничтожено имущество, восстановление которого обошлось в 690 тыс. рублей, а директор МП ЖКХ поселка А.Г. Сорокин привлечен к уголовной ответственности за преступление по статье 168 ч.1 Уголовного кодекса - уничтожение чужого имущества в крупном размере, совершенное по неосторожности, и приговорен к выплате денежного штрафа. Аварийная ситуация с электроснабжением была ликвидирована лишь через 20 ч 30 мин.

Для этого должен иметься заранее подготовленный и согласованный план ликвидации аварий и инструкции персоналу по выполнению его.

Общие сведения. Одной из ключевых проблем нетрадиционной, в первую очередь, солнечной энергетики является проблема теплового аккумулирования. Тепловые аккумуляторы эффективно используются также в комплексе с ветроэлектрическими агрегатами, фотобатареями и в традиционной энергетике для снятия пиковых нагрузок.

Тепловое аккумулирование - это физический или химический процесс, посредством которого происходит накопление тепла в тепловом аккумуляторе энергии.

Тепловыми аккумуляторами (ТА) называют устройства, обеспечивающие протекание обратимых процессов накопления, хранения и отдачи тепловой энергии в соответствии с нуждами потребителя.

Аккумулирование тепла в различных энергосистемах ориентировано в первую очередь на отопление и горячее водоснабжение. Применение аккумуляторов тепла в водонатрева тельной системе позволяет приспосабливать ее к условиям спроса на горячую воду, изменяющегося в течение суток. Применение различных способов накопления тепловой энергии при использовании солнечных энергетических установок позволяет также преодолеть проблему, обусловленную суточной периодичностью и непостоянством поступления солнечной энергии. Даже в условиях безоблачного неба необходимое количество энергии при соответствующей температуре теплоносителя можно получить только на протяжении нескольких часов до и после полудня. Например, солнечные энергетические установки, предназначенные для отопления помещений, поддерживают температуру теплоносителя на уровне 60 °С лишь около трех часов в сутки. Поскольку в подобных системах периоды потребления и получения энергии не совпадают, накапливать ее необходимо в одни периоды суток, а использовать - в другие.

Практическое применение различных типов тепловых аккумуляторов связано в первую очередь с определением их оптимальных рабочих характеристик, с выбором недорогих и эффективных конструкционных материалов и теплоаккумулирующих сред.

Эффективность теплового аккумулятора при прочих равных условиях определяется массой и объемом теплоаккумулирующего материала (ТАМ), необходимого для обеспечения заданных параметров процесса.

Классификация тепловых аккумуляторов проводится в соответствии с несколькими главными признаками:

по природе аккумулирования:

  • теплоемкостные (TEA),
  • аккумуляторы с фазовым переходом (АФТ),
  • термохимические аккумуляторы (ТХА);

по уровню рабочих температур:

  • низкотемпературные (до 100 °С) ТА,
  • среднетемпературные ТА (от 100 до 400 °С),
  • высокотемпературные ТА (свыше 400 °С);

по продолжительности периода заряд-разряд ТА:

  • краткосрочные (до 3-х суток),
  • среднесрочные (до 1 месяца),
  • межсезонные (до полугода).

Выбор и конструирование ТА проводится с учетом параметров энергосистемы и потребителя тепловой энергии. Как правило, в нетрадиционной энергетике используются краткосрочные или среднесрочные низкотемпературные теплоемкостные аккумуляторы и аккумуляторы с фазовым переходом.

При рассмотрении характеристик аккумулирующих и теплообменных сред, применяемых в тепловом аккумуляторе, можно выделить такие основные разновидности теплового аккумулирования:

  • прямое аккумулирование тепловой энергии - аккумулирующим и теплообменным веществом является одна и та же среда; аккумулирующая среда может быть твердой, жидкой, газообразной или двухфазной (жидкость + газ);
  • косвенное аккумулирование - энергия аккумулируется посредством теплообмена (например, теплопроводностью через стенки резервуара) или в результате массообмена специальной теплообменной среды (в жидком, двухфазном или газообразном состоянии). Аккумулирующая среда может быть твердой, жидкой или газообразной, процесс может протекать без фазового перехода или с фазовым переходом (твердое тело- твердое тело, твердое тело-жидкость, жидкость-пар);
  • полупрямое аккумулирование - процесс проходит, как во втором случае, за исключением того, что аккумулирующая емкость теплообменной среды играет наиболее важную роль;
  • сорбционное аккумулирование - в этом случае используется способность некоторых аккумулирующих сред абсорбировать газы с выделением или поглощением тепла при десорбции газа. Передача энергии может происходить непосредственно в форме тепла или с помощью газа.

Технические решения. Широкий спектр проблем при применении аккумуляторов тепла и большое разнообразие методов аккумулирования приводят к различным техническим решениям, причем для каждого конкретного случая внедрения ТА в энергетическую систему на основе нетрадиционных и возобновляемых источников энергии необходимо проведение детальных исследований и расчетов. Аккумулирование тепла за счет теплоемкости наименее эффективно, низкая теплоемкость многих доступных теплоаккумулирующих материалов должна компенсироваться использованием больших объемов ТАМов, разряд аккумуляторов характеризуется переменной температурой. Эти аккумуляторы еще называются теплоемкостными (TEA), так как их работа основана на использовании теплоемкостных характеристик различных твердых и жидких веществ.

Аккумуляторы, использующие тепловые эффекты обратимых фазовых переходов (АФП), характеризуются более высокой плотностью теплового потока при малом объеме ТАМов и практически постоянной температурой разряда. Однако данный метод имеет свои недостатки: во-первых, стоимость ТАМов с фазовым переходом выше стоимости традиционных теплоемкостных материалов (камень, вода, гравий), во-вторых, теплообмен в АФП требует наличия развитой поверхности теплопередачи, что значительно увеличивает их стоимость. Поэтому при разработке ТА должна учитываться не только стоимость ТАМов, но и стоимость устройства АФП с учетом доступности аккумулирующих и конструкционных материалов.

Плотность энергии в аккумуляторах на основе обратимых химических реакций (так называемые термохимические аккумуляторы - ТХА) выше плотности энергии в АФП и значительно выше, чем в TEA. Принцип работы ТХА основан на аккумулировании энергии, которая поглощается и освобождается при разрыве и создании молекулярных связей в полностью обратимых химических реакциях. При создании ТХА существуют значительные затруднения, обусловленные небольшим количеством дешевых химических соединений, пригодных для ТХА, и выделением газов в процессе химических реакций.

Таким образом, на практике широко используют теплоемкостные аккумуляторы и аккумуляторы с фазовым переходом. Они рекомендуются как для промышленности с использованием значительных объемов, так и в индивидуальных хозяйствах и технологических процессах. Аккумуляторы ТХА могут быть рекомендованы лишь в определенных случаях с использованием безопасных технологий. Тепловое аккумулирование. Для создания эффективных тепловых аккумуляторов необходимо решить такие первоочередные задачи:

  • внедрение теплоаккумулирующих материалов с высокими удельными энергетическими характеристиками, большим ресурсом работы и широким диапазоном рабочих температур;
  • выбор конструкционных материалов с высокими теплотехническими и коррозионностойкими характеристиками;
  • создание оптимальных конструкций ТА в зависимости от функционального назначения, источника энергии и нужд потребителей.

При выборе рабочих веществ для тепловых аккумуляторов необходимо учитывать энергетические и эксплуатационные характеристики, как источника энергии, так и самого аккумулятора. Основными рабочими характеристиками ТАМов являются: удельная энергия, рабочий диапазон температур, стабильность и безопасность в работе, низкая коррозионная агрессивность, недефицитность и невысокая стоимость. При использовании в качестве ТАМов гидратов солей обращают внимание на их способность присоединять и терять молекулу воды при нагреве и охлаждении.

В зависимости от ряда факторов тепловой аккумулятор может иметь постоянные или переменные показатели массы, объема и давления. Постоянная масса (dMaK = 0) - как правило, для случая косвенного аккумулирования, однако может быть таковой и при прямом аккумулировании, если перемешиваемая часть массы после охлаждения (разряд ТА) или нагрева (заряд ТА) полностью возвращается в аккумулятор. Переменная масса (dMaK ф 0) - всегда в случае прямого аккумулирования. Постоянный объем (dVaK = 0) - для случая аккумулирования в закрытых резервуарах. Переменный объем (dУлк ф 0) - для случая аккумулирования в условиях атмосферного давления или при помощи специального компрессионного оборудования.

Статьи по теме: