Что является основным источником энергии на планете. Основные источники энергии

Cтраница 1


Основные источники энергии, используемые человеком.  

Основной источник энергии, используемый автотрофа-ми, - Солнце. Образно говоря, автотрофы являются кормильцами биосферы: они не только питаются сами, но и кормят (своим телом) других. Поэтому их называют продуцентами. Биомасса, создаваемая ими, называется первичной.  

Основными источниками энергии на нефтеперерабатывающих заводах являются тепло, водяной пар и электроэнергия. Для получения всех видов энергии расходуется до 6 % перерабатываемой нефти, причем половина этого - количества сжигается на ТЭЦ, а другая - в трубчатых печах технологических установок. В связи с этим одной из важнейших проблем нефтегазоперфаботки является повышение технико-экономической эффективности всех технологических процессов.  

Линии излучения некоторых лазеров.| Линии излучения некоторых лазеров, слабо или умеренно поглощаемые в атмосфере.  

Основным источником энергии для всех процессов, происходящих в биосфере, является солнечное излучение. Атмосфера, окружающая Землю, слабо поглощает коротковолновое излучение Солнца, которое, в основном, достигает земной поверхности. Некоторая часть солнечного излучения поглощается и рассеивается атмосферой. Поглощение падающей солнечной радиации обусловлено наличием в атмосфере озона, углекислого газа, паров воды, аэрозолей.  

Основным источником энергии, аккумулируемой в аденозинтрифосфате (АТФ), является глюкоза. В клетках глюкоза с помощью ферментных систем сначала подвергается бескислородному расщеплению до двух молекул молочной кислоты СН3СН (ОН) СООН. Энергия, выделяемая при расщеплении одной молекулы глюкозы при гликолизе, аккумулируется в двух вновь образованных молекулах АТФ. По мере необходимости АТФ гидролизуется на аденозиндифосфат (АДФ) и фосфорную кислоту с выделением около 10 ккал тепловой энергии. Молочная кислота подвергается дальнейшему кислородному расщеплению в последовательных окислительно-восстановительных реакциях до углекислого газа и водорода, который, в свою очередь, окисляется кислородом воздуха до воды. Энергия, освобождаемая при этом, расходуется на регенерацию АТФ, то есть на присоединение к АДФ третьего остатка фосфорной кислоты. В результате полного расщепления двух молекул молочной кислоты выделяется энергия, достаточная для синтеза 36 молекул АТФ из АДФ.  

Основным источником энергии на Земле является Солнце.  

Основными источниками энергии, потребляемой промышленностью, являются горючие ископаемые и продукты их переработки, энергия воды, биомасса и ядерное топливо. В значительно меньшей степени используются энергия ветра, солнца, приливов, геотермальная энергия. Мировые запасы основных видов топлива оцениваются в 1 28 - Ю13 тонн УТ, в том числе, ископаемые угли 1 12 - Ю13 тонн, нефть 7 4 - Ю11 тонн и природный газ 6 3 - Ю11 тонн УТ.  

Основным источником энергии (тепла) в процессе азотирования является реакция азотирования, которая дает до 96 % от общего прихода энергии. Электроэнергия, подводимая при разогреве печи, составляет всего 2 - 3 % от общего прихода энергии.  

Основным источником энергии, поступающей на Землю, является Солнце. Солнечное излучение формируется в результате интенсивного взаимодействия с веществом в верхних слоях Солнца и находится с ним в равновесии. Электромагнитное излучение Солнца можно охарактеризовать двумя температурами - энергетической, которая определяется законом Стефана-Больцмана, и спектральной, определяемой из закона Вина. Для равновесного излучения эти температуры равны. Показателем неравновесности излучения может служить разность энергетической и спектральной температур. По мере удаления от поверхности Солнца энергетическая температура падает, а спектральная температура остается без изменения. Таким образом, неравновесность излучения по мере удаления от Солнца возрастает. Поэтому с увеличением расстояния от Солнца создаются более благоприятные условия для процессов самоорганизации, которые протекают в неравновесных условиях. С другой стороны, сложность образуемых систем зависит от температуры. С увеличением расстояния от Солнца температура падает, поэтому существует некоторое оптимальное расстояние, на котором возможно образование систем максимальной сложности. Уровень самоорганизации системы определяется степенью отклонения от равновесного состояния и уровнем сложности. В солнечной системе наиболее оптимальное сочетание названных параметров наблюдается на расстояниях, соответствующих орбите Земли. Таким образом, в Солнечной системе наибольший уровень самоорганизации может быть достигнут на Земле.  

Основными источниками энергии в пластах являются напор краевой воды, подошвенной воды, газа и газовой шапки; давление растворенного газа в нефти в момент выделения газа из раствора; сила тяжести; упругость пласта и насыщающих его нефти, воды и газа. Эти силы могут проявляться раздельно или совместно.  

Основными источниками энергии в пластах являются напор краевой воды, подошвенной воды, газа газовой шапки, давление растворенного газа в нефти в момент выделения газа из раствора, сила тяжести, упругость пласта и насыщающих его нефти, воды и газа. Эти силы могут проявляться раздельно или совместно. Таким образом, энергетические ресурсы нефтеносного пласта характеризуются существующим в нем давлением. Чем выше давление, тем больше при прочих равных условиях запасы энергии и тем полнее может быть использована залежь нефти.  

Основным источником энергии в промышленности, сельском хозяйстве и в других отраслях народного хозяйства служит топливо. В зависимости от физического состояния топливо подразделяется на твердое, жидкое и газообразное.  

Основными источниками энергии для человечества были мускульная сила людей и рабочего скота, а для обогрева жилищ и приготовления пищи использовалась древесина и навоз домашних животных. Однако доля древесины и древесного угля была велика, а мускульная сила человека и животных применялась по-прежнему.  

Система измерения теплоты два века назад базировалась на представлении о том, что тепловая энергия сохраняется, никуда не пропадает, а только переходит из одного места в другое. Мы до сих пор пользуемся следующими правилами: Для измерения количества тепла заставим его...

Виды энергии – известные человечеству типы энергии

Понятие «энергия» определяется как мера различных форм движения материи и как мера перехода движения материи из одной формы в другую. Соответственно, виды и типы энергии различают по формам движения материи. Челочек имеет дело с различными видами энергии. По сути, весь технологический процесс есть преобразование одних видов энергии в другие. В процессе прохождения технологического тракта энергия многократно преобразуется из одного вида в другой, что ведет к уменьшению ее полезного количества из-за потерь и рассеяния в окружающей среде.

Типы энергии известные сегодня

  • Механическая
  • Электрическая
  • Химическая
  • Тепловая
  • Световая (Лучистая)
  • Ядерная (Атомная)
  • Термоядерная (Термоядерного синтеза)
Кроме того, нам известны и другие виды энергии, названия которых имеют не физический, а описательный смысл, такие как ветровая энергия, или геотермальная энергия. В подобных случаях физическая форма характера энергии подменяется названием ее источника. Поэтому правильно говорить скорее о механической энергии ветра, энергии потока ветра, или тепловой энергии геотермальных источников. В противном случае, количество псевдо энергий можно будет плодить до бесконечности, выдумывая мусорную энергию, водородную энергию, ментальную энергию, или жизненную энергию, и энергию рук. Сочетая слово «энергия» с конкретными объектами мы лишаем эту связку физического смысла. Невозможно измерить количество психической энергии, или энергии воли. Остается лишь намек, что предмет имеет какую-то энергию, а какую – нам неизвестно. Налицо оказывается замусоривание текста или речи словом, не несущим смысловой нагрузки, ведь каждый предмет несет энергию и упоминать об этом бессмысленно. А по аналогии с энергией мысли должна появиться масса мысли, длина, ширина и высота мысли, а также ее плотность. Короче говоря, такие обороты – очевидное свидетельство глупости и неграмотности автора, или оратора.

Физические понятия, связанные с определением слова «энергия»

Но вернемся к реальным физическим понятиям, связанным с определением слова «энергия». Выше перечисленные типы энергии известны человеку и использовались им на протяжении всей истории цивилизации. Исключение составляет разве что энергия атомного распада, полученная лишь в начале 20-го века. Так, механическую энергию мы используем до сих пор, катаясь на велосипеде, используя маятниковые часы, поднимая и опуская грузы краном. Электрическая энергия знакома нам издревле в виде молний и статического электричества. Однако широко этот тип энергии стал применяться лишь с 19 века, когда были изобретены Вольтов столб – батарея постоянного тока и . Однако и в древности люди знали и использовали этот вид энергии, хотя и не повсеместно. Известны древнеегипетские украшения и предметы культа, покрытие которых могло быть выполнено только электролизом. — пожалуй, самая распространенный и широко используемый вид энергии, как в древности, так и в наши дни. Костер, угли, горелка, спички и многие другие предметы, связанные с горением имеют в своей основе энергию химического взаимодействия органического вещества и кислорода. Сегодня высокотехнологичное «горение» осуществляется в и , в и . Однако такие устройства, как турбины и двигатели внутреннего сгорания между сырьем (химической энергией) и конечным продуктом (электрической энергией) имеют нехорошего посредника – . К большому сожалению, к.п.д. тепловых машин невелик, причем ограничения накладывает не материал, а теория. Для предел равен 40%. На основе химических взаимодействий, химической энергии действуют и человеческие тела и все животные. Употребляя в пищу растения, мы получаем от них энергию химических связей, сформированную благодаря поглощению солнечной энергии. То есть, опосредованно, человек также питается солнечной энергией, как питается ей все живое на Земле. Солнца – это та энергия, без которой не существовало бы жизни на нашей планете. Практически все виды и типы энергии, кроме атомной и термоядерной, можно полагать вторичными, по отношению к лучистой солнечной энергии. Механическая энергия приливов-отливов, а также тепловая геотермальных источников также не связаны с солнечным излучением.

Термоядерная энергия лежит в основе работы нашего центрального светила – Солнца

А это значит, что и солнечная энергия в свою очередь является порождением термоядерной энергии синтеза, выделяющейся в недрах Солнца. Таким образом, подавляющее большинство видов энергии, используемых нами на Земле, имеют своего первичного прародителя в виде термоядерной энергии синтеза. Ядерная, или атомная энергия – единственный вид энергии, выпадающий за пределы «стандартного» природного энергетического оборота. До появления человека, природа не знала (за редким исключением) процессов массового точечного распада атомных ядер с выделением огромной энергии. Исключение составляет африканский природный «атомный реактор» — месторождение урановых руд, где идут реакции атомного распада с нагревом окружающих пород. Однако в природе атомный распад длится миллионы лет, ведь периоды полураспада урана и плутония весьма велики. И хотя атомному распаду подвержены также многие другие атомы, помимо урана и плутония, в целом, в единицу времени эти процессы не вызывают существенных изменений в окружающем веществе. Человек внес свои изменения в энергетический баланс планеты, взрывая бомбы, строя атомные станции, сжигая нефть, газ и уголь. Безусловно, подобные процессы происходили и до человека, но они были растянуты на миллионы лет. Падали метеориты, горели леса, происходили выбросы углекислого газа из болот и толщ мирового океана, распадался уран. Но медленно — в небольших объемах на единицу времени.

Альтернативные источники

Сегодня активно развиваются альтернативные виды энергии и альтернативные . Однако в самих этих словах уже кроется ошибочное отношение к слову «энергия». Называя источники энергии «альтернативными» мы противопоставляем их «традиционным» источникам – углю, нефти и газу. И это понятно. Но, говоря «альтернативный вид энергии» мы несем чушь, потому что различные виды энергии существуют вне наших желаний. И не ясно, чему альтернативна энергия ветра, ведь она просто есть. Или чему альтернативна солнечная и термоядерная энергия нашего светила. Мы в любом случае, пользуемся ею, и странно называть ее альтернативной, поскольку как раз для нее альтернатив то и нет. В ближайшие тысячи лет мы никуда не уйдем от использования солнечной энергии, поскольку на ней базируется вся экосистема планеты. Аналогично странно выглядят слова «нетрадиционные виды энергии», «возобновляемые виды энергии», или «экологически чистые виды энергии». Какой вид энергии традиционен? Как можно возобновить тот или иной вид энергии? А как проверить энергию на экологическую чистоту? «Традиционность», «возобновляемость» и «экологичность» разумнее и правильнее отнести к . Тогда все сразу станет ясно и понятно. И тогда, упорядочив причинно-следственные связи можно приступать к поиску. Нетрадиционные виды источников энергии можно легко найти, изучая природу и окружающий мир. Здесь Вам и навоз для отопления, и сено, и генератор, использующий мускульную силу.

Возобновляемые источники энергии следует искать только в среде природных процессов

Подобных процессов не так уж много и все они связаны с движением по планете вещества – земли, воды, воздуха, а также с деятельностью живых организмов. Хотя, строго говоря, возобновляемых источников энергии – нет, поскольку главная наша «батарейка» — Солнце – имеет ограниченный срок службы. А для поиска экологически чистых источников следует для начала ясно определить критерии экологичности, ведь, по сути, любое вмешательство человека в энергобаланс планеты наносит урон экологии. Строго говоря, не может быть экологически чистых источников энергии, ведь они в любом случае будут влиять на экологию. Мы можем лишь свести это влияние к минимуму, или компенсировать его. При этом любые компенсационные воздействия должны производиться в рамках глобальной аналитической прогнозной модели.

Для существования и развития человеческого общества необходимы . Решающая роль в развитии мировой энергетики принадлежит ресурсам энергии, выяснению вопроса о том, какими геологическими и разведанными запасами различных источников энергии и, в частности, нефти и газа, располагает человечество, каков энергетический потенциал нашей планеты.

По степени долговечности источники энергии делятся на возобновляемые и не возобновляемые. К возобновляемым или неисчерпаемым источникам энергии относятся: солнечная энергия, энергия ветра, энергия приливов и отливов, гидроэнергия, геотермальная энергия.

Не возобновляемые источники энергии: атомная энергия и энергия каустобиолитов. Каустобиолиты - это горючие полезные ископаемые (каусто - горючий, биос - органический, литос - камень). К ним относятся каменный уголь, нефть, природные углеводородные газы, сланцы, торф.

Мировые источники энергии: солнечная энергия

Ежедневно на Землю поступает 1,5⋅10*22 Дж солнечной энергии . Около 30 % солнечных лучей отражается облаками и земной поверхностью, но большая часть проникает через атмосферу. Нагревая атмосферу, океаны и сушу, солнечное тепло вызывает ветры, дожди, снегопады и океанские течения.

Однако вся энергия вновь излучается в холодный космос, сохраняя земную поверхность в тепловом равновесии.

Небольшая часть солнечной энергии аккумулируется в озёрах и реках, другая же часть - в живых растениях и животных. Солнечная энергия обладает такими свойствами, которые не встречаются ни у одного другого источника: она возобновляема, экологически чиста, управляема, по величине в тысячи раз превосходит всю ту энергию, которая используется в настоящее время.

Солнечная энергия используется для обогрева теплиц, домов, аккумулируется в солнечных батареях, которые преобразуют солнечную радиацию в электроэнергию, на космических кораблях применяются солнечные панели или фотоэлементы, обеспечивающие космонавтов электроэнергией при работе в открытом космосе. Недостаток этой энергии в том, что солнечные лучи рассеиваются земной поверхностью и требуется большая поверхность, собирающая солнечный свет.

Энергия ветра

Примерно 46 % поступающей солнечной энергии поглощается океаном, сушей и атмосферой. Эта энергия вызывает ветры, волны и океанские течения, нагревает моря и порождает колебания погоды. Оценка энергии ветра в глобальном масштабе – порядка 10*15 Вт, однако большая часть энергии сосредоточена в ветрах, дующих на заоблачных высотах, и, следовательно, недоступна для использования на поверхности суши. Устойчивые поверхностные ветры обладают мощностью порядка 10*12 Вт и могут быть использованы ветряными установками и в перевозках по морю.

В последние годы производство ветровой энергии в мире ежегодно увеличивается на 28 %. Предполагается, что к 2020 году на эту энергию будет приходиться до 10 % производимого в мире электричества.

В 2005 году принят закон Азербайджанской Республики о применении энергии Солнца и ветра, которых достаточно в стране.

Энергия приливов и отливов

Приливы являются результатом гравитационного притяжения Луны и Солнца, причём воздействие Луны значительно больше. Сила приливов является выражением силы вращения планеты. Высота приливов не везде одинакова.

Она редко превышает один метр при больших глубинах в океане, а над континентальным шельфом может достигать до 20 метров. Мощность приливов оценивается в 0,85⋅10*20 Дж. Во Франции (река Ранс) и в России (Кислая Губа) станции уже генерируют электричество из приливных волн. В утилизации приливов и отливов существует много проблем. Для эффективной работы станций требуется высота приливной волны более 5 м и наличие перекрытых лёгкими плотинами заливов - эстуариев. Но почти везде прибрежные приливы имеют высоту около 2 м и только, примерно, 30 мест на Земле удовлетворяют указанным требованиям. Наиболее важными из них являются: два смежных залива - Фанди (Канада) и Пассамукуодди (США); французское побережье вдоль Ла-Манша, где станция на Ранс успешно действует уже много лет, в Ирландском море эстуарии рек Англии, Белое море (Россия) и побережье Кимберли (Австралия). Энергия приливов может иметь достаточно большое значение в будущем, потому что является одной из немногих энергетических систем, которые действуют без серьёзного ущерба для окружающей среды.

Гидроэнергия

Примерно 23 % солнечной радиации уходит на испарение воды, выпадающей затем в виде дождя и снега.

Энергия воды представляет собой возобновляемые ресурсы. Примитивным образом сила воды использовалась за тысячи лет до двадцатого столетия, когда началось широкомасштабное перекрытие рек для производства электроэнергии. Из всех возобновляемых энергетических ресурсов наиболее интенсивно используется сила воды. Но неблагоприятным обстоятельством является то, что плотины имеют конечный и, скорее всего, короткий срок жизни. Движущийся поток воды переносит груз тонких глинистых частиц в виде суспензии; как только поток перекрывается, и скорость воды падает, этот материал отлагается, и резервуар может быть целиком заполнен ими за 50-200 лет.

Наибольший неосвоенный потенциал этой энергии может быть использован там, где имеются большие запасы энергии воды.

Геотермальная энергия

При погружении вглубь земли на 1 км температура увеличивается от 15 до 75 С. В ядре земли температура, вероятно, превышает 5000 C. В среднем из недр к поверхности поступает 6,3⋅10*6 Дж энергии. Кроме того, геотермальная энергия связана с распадом таких радиоактивных элементов как U

238 , U 235 , Th 232 , K 40, которые в рассеянном виде распространены в недрах повсеместно. При этом подземные воды нагреваются и выходят на поверхность в виде пара и горячей воды (гейзеры). Геотермальные горячие воды используются в Исландии, Японии, Италии, Индонезии, на Филиппинах, России, Америке и Новой Зелландии для обогрева домов, плавательных бассейнов, теплиц. Но они имеют всё же малое значение по сравнению с производством электроэнергии.

Атомная энергия

Атомную энергию можно получить с помощью двух процессов. Первый - слияние или синтез лёгких элементов, таких как водород и литий, при котором образуются более тяжёлые элементы. Это процессы, идущие на Солнце и в водородной бомбе, но они трудно контролируемы; возможно, в будущем синтез таких элементов может стать главным источником энергии. Второй процесс - деление (распад) тяжёлых элементов, таких как уран и торий. Это процесс, идущий в атомной бомбе. Поскольку эта реакция может быть контролируема, деление тяжёлых элементов уже используется для генерации электричества на атомных электростанциях. Природной способностью к распаду обладает только уран-235, который составляет всего 0,7 % общего количества природных атомов урана. Цепная реакция урана-235 впервые была осуществлена профессором Энрико Ферми 2 декабря 1942 года в одном из наиболее важных экспериментов в истории Земли. Стоимость выделения атомов урана-235 высока. Однако при распаде одного атома урана-235 высвобождается 3,2⋅10*11 Дж энергии.

Поскольку в 1 г атома урана-235 содержится около 2,56⋅10-21 атомов, то при распаде 1 г урана образуется около 8,19⋅10*10 Дж, что эквивалентно энергии, получаемой при сгорании 2,7 т угля. В настоящее время на уране-235 работает около 300 атомных электростанций. Первое место по использованию атомной энергии занимает США (около 50 %), затем Европа (30 %) и Япония (12 %). При использовании атомной энергии остро стоит проблема безопасности, а также проблема утилизации радиоактивных отходов.

Горючие ископаемые

В настоящее время используются три вида горючих ископаемых: каменный уголь, нефть и природный газ. На их долю приходится около 90 % мировой энергии. Уголь. Мировые запасы всех видов углей оцениваются в 13800 млрд. т., а дополнительные потенциальные ресурсы - в 6650 млрд. т. География распределения такова: примерно 43 % углей мира залегают в России, 29 % - в Северной Америке, 14,5 % - в странах Азии, главным образом в Китае, и 5,5 % - в Европе. На остальной мир приходится 8 %.

Хотя уголь во всём мире не является ведущим видом топлива, в некоторых странах он всё ещё преобладает, и, возможно, в будущем трудности в снабжении нефтью и газом приведут к возрастающему использованию угля. При использовании угля возникает много трудностей. Он содержит от 0,2 % до 7 % серы, присутствующей в основном в виде пирита FeS2, сульфата закисного железа FeSO4⋅7H2O, гипса CaSO4⋅2H2 O и некоторых органических соединений.

Когда уголь сгорает, выделяется окисленная сера, выбросы которой в атмосферу вызывают кислотные дожди и смог. Другая проблема - это сама добыча угля. Подземные методы разработки трудны и даже опасны. Разработка открытым методом более эффективна и менее опасна, но вызывает нарушение поверхностного слоя на большой площади. В современном мире основное применение в качестве источников энергии имеют нефть и природные углеводородные газы.

Источники энергии на Земле

Не все источники энергии равноценны. Одни представляют лишь принципиальный интерес, с другими связано существование цивилизации. Одни источники практически неисчерпаемы, другим придет конец в ближайшие столетия, а то и десятилетия.

Уже несколько миллиардов лет посылает свои живительные лучи на Землю главный опекун нашей планетной системы – Солнце. Этот источник энергии можно смело назвать неисчерпаемым. Каждый квадратный метр земной поверхности получает от Солнца энергию средней мощности около 1,5 кВт; за год это составит около 10 миллионов килокалорий энергии – такое количество тепла дают сотни килограммов угля. Сколько же тепла получает от Солнца весь земной шар? Подсчитав площадь Земли и учитывая неравномерное освещение солнечными лучами земной поверхности, получим около 10 14 кВт. Это в 100 тысяч раз больше энергии, которую получают от всех источников энергии на Земле все фабрики, заводы, электростанции, автомобильные и самолетные моторы, короче – в 100 тысяч раз больше мощности энергии, потребляемой всем населением земного шара (порядка миллиарда киловатт).

Однако, несмотря на множество проектов, солнечная энергия используется совершенно незначительно. И правда, подсчет наш дал огромную цифру, – но ведь это количество энергии попадает во все места земной поверхности: и на склоны недоступных гор, и на поверхность океанов, занимающую большую часть земной поверхности, и на пески безлюдных пустынь.

Кроме того, совсем не так уже велико количество энергии, приходящейся на небольшую площадь. А ведь вряд ли целесообразно создавать приемники энергии, простирающиеся на квадратные километры. Наконец, очевидно, что заниматься превращением солнечной энергии в тепло имеет смысл в тех местностях, в которых много солнечных дней.

Интерес к прямому использованию энергии Солнца несколько возрос в последнее время в связи с появившимися возможностями непосредственно превращать солнечную энергию в электрическую. Такая возможность, естественно, весьма привлекательна. Однако до сих пор она реализована в очень незначительной степени.

Сравнительно недавно был обнаружен аккумулятор солнечной энергии у нас над головами – в верхних слоях атмосферы. Оказалось, что кислород на высоте 150–200 км над земной поверхностью вследствие действия солнечного излучения находится в диссоциированном состоянии: его молекулы разбиты на атомы. При объединении этих атомов в молекулы кислорода могло бы выделиться 118 ккал/моль энергии. Каков же общий запас этой энергии? В слое толщиной 50 км на указанной высоте запасено 10 13 ккал – столько, сколько освобождается при полном сгорании нескольких миллионов тонн угля. В СССР такое количество угля добывается за несколько дней. Хотя энергия диссоциированного на больших высотах кислорода непрерывно возобновляется, здесь мы опять сталкиваемся с проблемой малой концентрации: устройство для практического использования этой энергии не так-то легко придумать.

Вернемся к обсуждению источников энергии. Воздушные массы земной атмосферы находятся в непрерывном движении. Циклоны, бури, постоянно дующие пассатные ветры, легкие бризы – многообразно проявление энергии потоков воздуха. Энергию ветра использовали для движения парусных судов и в ветряных мельницах еще в древние века. Полная среднегодовая мощность воздушных потоков для всей Земли равна не много не мало 100 млрд. кВт.

Однако не будем возлагать больших надежд на ветер как источник энергии. Мало того, что источник этот неверен – к скольким несчастьям и разочарованиям приводили ветряные штили в век парусных судов, – он обладает тем же недостатком, что и солнечная энергия: количество энергии, выделяющееся на единицу площади, относительно невелико; лопасти ветряной турбины, если создать такую для производства энергии в заводских масштабах, должны были бы достигнуть практически неосуществимых размеров. Не менее существенным недостатком является непостоянство силы ветра. Поэтому энергия ветра, или, как его поэтично называют, голубого угля, используется лишь в маленьких двигателях – «ветряках». Во время ветра они дают электроэнергию сельскохозяйственным машинам, освещают дома. Если образуется излишек энергии, он запасается в аккумуляторах (так называются хранители электроэнергии). Эти излишки можно использовать в затишье. Конечно, полагаться на ветряк нельзя – он может играть лишь роль вспомогательного двигателя.

Даровым источником энергии является также движущаяся вода – приливная волна океанов, непрерывно наступающая на сушу, и потоки речных вод, текущих к морям и океанам.

Мощность всех рек земного шара измеряется миллиардами киловатт, используется же всего примерно 40 млн. кВт, т.е. пока порядка 1 %. Потенциальная мощность рек СССР достигает 400 млн. кВт, а из них используется пока около 20 млн. кВт.

Если бы мы лишились угля, нефти и других источников энергии и перешли бы только на белый уголь – энергию рек, то при полном использовании этой энергии (предполагая, что построены все возможные гидроэлектростанции на всех реках земного шара) пришлось бы уменьшить потребление энергии на земном шаре. Расход энергии на земном шаре в настоящее время превышает миллиард киловатт – одной лишь гидроэнергии человечеству уже сейчас только-только хватило бы.

Ну, а приливная волна? Ее энергия весьма значительна, хотя примерно в десять раз меньше энергии рек. Увы, эта энергия пока что используется лишь в самой незначительной степени: пульсирующий характер приливов затрудняет ее использование. Однако советские и французские инженеры нашли практические пути к преодолению этой трудности. Теперь приливная электростанция обеспечивает выдачу гарантированной мощности в часы максимального потребления. Во Франции построена и уже работает опытная ПЭС Сен Мало, а в СССР строится станция в Кислой Губе в районе Мурманска. Эта последняя послужит опытом для сооружения проектируемых мощных ПЭС в Лумбовском и Мезенском заливах Белого моря. Во Франции к 1965 г. будет пущена приливная станция мощностью в 240 тыс. кВт.

Вода в океанах на больших глубинах имеет температуру, отличающуюся от температуры поверхностных слоев на 10–20°. Значит, можно построить тепловую машину, нагревателем которой в средних широтах явился бы верхний слой воды, а холодильником – глубинный. КПД такой машины будет 1–2 %. Но это, конечно, тоже очень неконцентрированный источник энергии.

Солнце, воздух и вода – даровые источники энергии*16. Даровые в том смысле, что использование их энергии не влечет за собой уменьшения каких бы то ни было земных ценностей. Работа ветряков не уменьшает количества воздуха на земном шаре, работа гидроэлектростанций не уменьшает глубины рек, не используются запасы земных веществ и при работе солнечных машин.

В этом смысле описанные до сих пор источники энергии обладают большим преимуществом по сравнению с топливом. Топливо сжигается. Использование энергии каменного угля, нефти, дерева – это невозвратимое уничтожение земных ценностей. Было бы очень заманчиво осуществить фотохимический двигатель, т.е. получать энергию при помощи механизма фотосинтеза, который обеспечивает накопление энергии топлива. Зеленый лист любого растения – это завод, который из молекул воды и углекислого газа благодаря энергии солнечных лучей вырабатывает органические вещества с большим запасом энергии в молекулах. Этот процесс в растениях имеет малый КПД (~1 %), но и при этом ежегодно запасаемая растениями энергия равна 2·10 15 кВт·ч, т.е. в сотни раз превышает годовую выработку энергии всеми электростанциями мира. Механизм фотосинтеза до конца еще не разгадан, но нет сомнения, что в будущем удастся не только осуществить фотосинтез в искусственных условиях, но и повысить при этом его КПД. Однако в этой области человек пока не может состязаться с природой и вынужден пользоваться ее дарами, сжигая дрова, нефть, уголь.

Каковы же запасы топлива на земном шаре? К обычному топливу, т.е. такому, которое горит от поднесенного огня, относятся уголь и нефть. Их запасы на земном шаре крайне малы. При современном расходовании нефти ее разведанные запасы придут к концу уже к началу следующего тысячелетия. Запасов каменного угля несколько больше. Количество угля на Земле выражают цифрой в десять тысяч миллиардов тонн. Килограмм угля при сгорании дает 7000 ккал тепла. Таким образом, общие энергетические запасы угля измеряются цифрой порядка 10 20 ккал. Это в тысячи раз больше годового потребления энергии.

Запас энергии на тысячу лет надо признать очень малым. Тысяча лет – это много только по сравнению с длительностью человеческой жизни, а человеческая жизнь – ничтожное мгновение по сравнению с жизнью земного шара и с временем существования цивилизованного мира. Кроме того, потребление энергии на душу населения непрерывно растет. Поэтому, если бы запасы горючего сводились к нефти и углю, то положение дел на Земле с энергетическими запасами следовало бы считать катастрофическим.

В начале сороковых годов нашего века была доказана практическая возможность использования совершенно нового вида горючего, называемого ядерным. Мы располагаем значительными запасами ядерного горючего.

Здесь не место останавливаться на устройстве атома и его сердцевины – атомного ядра, на том, каким образом можно извлечь внутреннюю энергию из атомных ядер. Выделение ядерной энергии может быть осуществлено лишь в значительных масштабах на так называемых атомных электростанциях. Ядерная энергия выделяется в виде тепла, которое используется совершенно так же, как на электростанциях, работающих на каменном угле.

В настоящее время мы можем выделять энергию в промышленных количествах из двух элементов – урана и тория. Особенность ядерного горючего, являющаяся его основным достоинством, – это исключительная концентрированность энергии. Килограмм ядерного горючего отдает энергии в 2,5 миллиона раз больше, чем килограмм каменного угля. Поэтому, несмотря на относительно малую распространенность этих элементов, их запасы на земном шаре в энергетическом выражении довольно значительны. Примерные расчеты показывают, что запасы ядерного горючего существенно больше, чем запасы каменного угля. Однако приобщение к топливу урана и тория не решает принципиальную задачу освобождения человечества от энергетического голода – запасы минералов в земной коре ограничены.

Но уже сейчас можно указать поистине безграничный источник энергии. Речь идет о так называемых термоядерных реакциях. Они возможны лишь при сверхвысоких температурах порядка двадцати миллионов градусов. Эта температура пока что достигается лишь при атомных взрывах.

Сейчас перед исследователями стоит задача получения высоких температур не взрывным путем, и первые попытки достигнуть температуры в миллион градусов увенчались успехом.

Если физики сумеют работать с необходимыми высокими температурами в десятки миллионов градусов, получаемыми не взрывным путем, то управляемая реакция слияния атомных ядер водорода (она и носит название термоядерной) станет возможной. При этой реакции будет выделяться огромная энергия на килограмм горючего. Для того чтобы обеспечить сейчас человечество энергией на один год, достаточно выделить термоядерную энергию путем переработки десятка миллионов тонн воды.

В мировом океане запасено столько термоядерной энергии, что ее хватит для покрытия всех энергетических потребностей человечества в течение времени, превышающего возраст солнечной системы. Вот уж действительно безграничный источник энергии.

Из книги Физическая химия: конспект лекций автора Березовчук А В

2. Химические источники тока ХИТы – устройства, которые применяют для непосредственного преобразования энергии химической реакции в электрическую. ХИТы применяются в различных областях техники. В средствах связи: радио, телефон, телеграф; в электроизмерительной

Из книги Звезды: их рождение, жизнь и смерть [Издание третье, переработанное] автора Шкловский Иосиф Самуилович

Глава 8 Ядерные источники энергии излучения звезд В § 3 мы уже говорили о том, что источниками энергии Солнца и звезд, обеспечивающими их светимость в течение гигантских «космогонических» промежутков времени, исчисляемых для звезд не слишком большой массы миллиардами

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

Глава 16 Остатки вспышек сверхновых - источники рентгеновского и радиоизлучения В результате взрыва звезды, который наблюдается как явление сверхновой, вокруг нее образуется туманность, расширяющаяся с огромной скоростью: как правило, порядка 10 000 км/с. Большая

Из книги Астрономия древнего Египта автора Куртик Геннадий Евсеевич

Глава 21 Пульсары как источники радиоизлучения Пожалуй, труднее всего для пульсаров определяются две основные характеристики всякого «нормального» источника радиоизлучения - поток и спектр. Эти трудности связаны прежде всего с самой природой пульсаров. Дело в том,

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

Источники для углубленного изучения Источники общего характера КнигиAnton Ted. Bold Science; Seven Scientists Who Are Changing Our World. N.Y.Kaku Michio. Hyperspace. London: Oxford University Press, 1994.Kaku Michio. Visions. N.Y.: Anchor Books, 1997.Kuhn Robert L. Closer to Truth Challenging Current Belief. N.Y.: McGraw-Hill 2000.Периодические изданияDiscoverScienceScience WeekScientific American (или

Из книги Источники питания и зарядные устройства автора

Источники общего характера КнигиAnton Ted. Bold Science; Seven Scientists Who Are Changing Our World. N.Y.Kaku Michio. Hyperspace. London: Oxford University Press, 1994.Kaku Michio. Visions. N.Y.: Anchor Books, 1997.Kuhn Robert L. Closer to Truth Challenging Current Belief. N.Y.: McGraw-Hill 2000.Периодические изданияDiscoverScienceScience WeekScientific American (или www.sciam. com)Узел Всемирной Паутины

Из книги О чем рассказывает свет автора Суворов Сергей Георгиевич

Источники и публикации Наиболее ранние упоминания названий светил встречаются в «Текстах пирамид», датируемых XXV-XXIII в. до н. э., - религиозном памятнике, во многом еще до конца не понятом (Faulkner, 1969; Mercer, 1952). Сами пирамиды представляют также интерес с точки зрения истории

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

ИСТОЧНИК ЧЕЛОВЕЧЕСКОЙ ЭНЕРГИИ - ТРИ ПУТИ ПОЛУЧЕНИЯ ЭНЕРГИИ ОТ СОЛНЦА Во-первых, позвольте спросить: Откуда появляется движущая энергия? Что является источником, который все движет? Мы видим океан, который вздымается и опадает, текущие реки, ветер, дождь, град и снег,

Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Два круговорота вещества и энергии на Земле Достигнув Земли, солнечная энергия способствует осуществлению на ней ряда процессов, без которых была бы невозможна органическая жизнь в ее высокой стадии. Особенно замечательны два круговорота веществ и энергии на Земле,

Из книги автора

Мощные источники энергии в ядрах радиогалактик Не все явления, наблюдаемые астрофизиками, можно объяснить посредством ядерной реакции превращения водорода в гелий. Уже около полусотни лет ученые изучают космические лучи, приходящие к нам на Землю из далеких глубин

Из книги автора

Из книги автора

Основные источники Физики Архимед. Сочинения. М.: Физматгиз, 1962.Бор Н. Избранные научные труды: В 2. М.: Наука, 1970–1971.Bohr N. Collected Works. Vol. 9 Nuclear Physics, 1929–1952. Amsterdam: North-Holland, 1986.Бронштейн М.П. Современное состояние релятивистской космологии // Успехи физических наук. 1931. № 11. С.

Из книги автора

4.5. Источники околоземных комет Из вышесказанного ясно, что в околоземном пространстве наблюдаются кометы, принадлежащие различным динамическим классам. Рассмотрим, что же известно в данный момент об источниках комет с такими разными орбитальными параметрами и о тех

Из книги автора

Источники гравитационного излучения – Возьмем две звезды, разгоним почти до скорости света и столкнем. Что произойдет? – Нехилый коллайдер получится… Из форума Слабость гравитационного излучения оставляет мало шансов для его регистрации. Где же искать подходящие

Из книги автора

2. Материальные источники В тексте обсуждается и утверждается, что искривление пространства-времени – это результат воздействия материальных источников. Что они собой представляют и как представлены формально? Эти источники являются материей в самом общем понимании.


Солнце играет исключительную роль в жизни Земли. Весь органический мир нашей планеты обязан Солнцу своим существованием. Солнце - не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра).

Солнечная постоянная - количество солнечной энергии, приходящей на поверхность площадью 1 кв.м, развернутую перпендикулярно солнечным лучам в космосе.

Солнце – это наша звезда. Изучая Солнце, мы узнаём о многих явлениях и процессах, происходящих на других звёздах и недоступных непосредственному наблюдению из-за огромных расстояний, которые отделяют нас от звёзд.

Солнце – это основной источник энергии на земле и первопричина, создавшая большинство других энергетических ресурсов нашей планеты, таких, как запасы каменного угля, нефти, газа, энергии ветра и падающей воды, электрической энергии и т.д.

Энергия Солнца, которая в основном выделяется в виде лучистой энергии, так велика, что её трудно даже себе представить. Достаточно сказать, что на Землю поступает только одна двухмиллиардная доля этой энергии, но она составляет около 2,5*10 18 кал./мин. По сравнению с этим все остальные источники энергии, как внешние (излучение луны, звёзд, космические лучи), так и внутренние (внутренние тепло Земли, радиоактивное излучение, запасы каменного угля, нефти и т.д.) пренебрежительно малы.

Солнце - самая близкая к нам звезда представляющая собой огромный светящийся газовый шар, диаметр которого примерно в 109 раз больше диаметра Земли, а его объём больше объёма Земли примерно в 1 млн. 300 тыс. раз. Средняя плотность Солнца составляет около 0,25 от плотности нашей планеты.

Поскольку солнце не твёрдый, а газовый шар, говорить о его размерах следует условно, понимая под ними размеры видимого с Земли солнечного диска.

Внутренняя часть солнца не доступна наблюдению. Она представляет собой своеобразный атомный котёл гигантских размеров, где под давлением около 100 миллиардов атмосфер происходят сложные ядерные реакции, во время которых водород превращается в гелий. Они-то и являются источником энергии солнца. Температура внутри солнца оценивается в 16 миллионов градусов.

Трофические цепи. Основные понятия, элементы.

1. Определение понятий "пищевая цепь", "трофический уровень", "консументы". Внутри экосистемы содержащие энергию органические вещества создаются автотрофными организмами и служат пищей (источником вещества и энергии) для гетеротрофов. Пример: животное поедает растения, это животное в свою очередь может быть съедено другим животным, и также путем может происходить перенос энергии через ряд организмов - каждый последующий питается предыдущим, поставляющим ему сырье и энергию. Такая последовательность называется пищевой цепью , а каждое ее звено - трофическим уровнем (греч. trophos - питание). Консументы : первичные - питаются первичными продуцентами, т.е. это травоядные животные; вторичные конс. - питаются травоядными, таким образом это уде плотоядные животные, так же как и третьичные конс., поедающие конс. второго порядка.

2 . Живые организмы, входящие в состав биоценоза в экосистеме, неодинаковы с точки зрения специфики ассимиляции ими вещества и энергии. В отличие от растений и бактерий животные не способны к реакци­ям фото- и хемосинтеза, а вынуждены использовать солнечную анергию опосредованно - через органичес­кое вещество, созданное фото- и хемосинтетиками. Таким образом, в биоценозе образуется цепочка после­довательной передачи вещества и эквивалентной ему энергии от одних организмов к другим или так называемая трофическая цепь (от греческого “трофе” - питаюсь).

Поскольку растения строят свой организм без посредников, их называют самопитающимися, или автотрофами. Так как будучи автотрофами, они со­здают первичное органическое вещество из неорганического, они являются продуцентами. Организмы, которые не могут строить собственное вещество из минеральных компонентов, используют органику, созданную автотрофами, употребляя их в пищу. Их называют гетеротрофами, что означает “питаемый другими”, а также консументами (от лат. “консумо” - потребляю). Плотоядные животные используют животные белки со специфическим набором амино­кислот. Они тоже являются консументами, но, в отличие от растительноядных, - консументами вторичными, или второго порядка. Но и на этом трофическая цепь не всегда заканчивается, так как вторичный консумент может служить источником питания для консумента третьего порядка и т.д. Но в одной трофи­ческой цепи не бывает консументов выше пятого порядка вследствие рассеяния энергии.

В процессе питания на всех трофических уровнях появляются “отходы”. Зеленые растения ежегодно частично или полностью сбрасывают листья. Значи­тельная часть организмов по тем или иным причинам постоянно отмирает. В конечном итоге так или иначе созданное органическое вещество должно частично или полностью замениться. Эта замена происходит благодаря особому звену трофической цепи - редуцентами (от лат. “редукцио” - возврат). Эти организмы - преимущественно бактерии, грибы, простейшие, мел­кие беспозвоночные - в процессе жизнедеятельности разлагают органические остатки всех трофических уровней продуцентов и консументов до минеральных веществ. Минеральные вещества, а также диоксид углерода, выделяющийся при дыхании редуцентов, вновь возвращаются к продуцентам.

Разные трофические цепи, в свою очередь, связа­ны между собой общими звеньями, образуя очень сложную систему, называемую трофической сетью.

Трофическая цепь в биогеоценозе есть одновре­менно цепь энергетическая, т.е. последовательный упорядоченный поток передачи энергии Солнца от продуцентов ко всем остальным звеньям. Поток энергии через экосистему можно измерить в различных ее точках, установив тем самым, какое количество солнечной энергии содержится в органи­ческих веществах, образованных в процессе фотосинтеза; какую часть энергии, заключенной в рас­тительном материале, может использовать растительноядное животное; какую часть этой энергии успевает использовать растительноядное, прежде, чем его съедает плотоядное, и так далее, от одного трофи­ческого уровня к другому.

Статьи по теме: