Темная материя и темная энергия во вселенной. Новый сюрприз Вселенной: темная энергия Суть темной энергии темного вещества

Наблюдаемые процессы Теоретические изыскания
  • Космологические модели
    • Большой взрыв
    • Вселенная Фридмана
  • Хронология космологии

Существует два варианта объяснения сущности тёмной энергии:

К настоящему времени (2012 год) все известные надёжные наблюдательные данные не противоречат первой гипотезе, так что она принимается в космологии как стандартная . Окончательный выбор между двумя вариантами требует высокоточных измерений скорости расширения Вселенной, чтобы понять, как эта скорость изменяется со временем. Темпы расширения Вселенной описываются космологическим уравнением состояния . Разрешение уравнения состояния для тёмной энергии является одной из самых насущных задач современной наблюдательной космологии.

Тёмная энергия также должна составлять значительную часть так называемой скрытой массы Вселенной.

Открытие тёмной энергии

На основании проведённых в конце 1990-х годов наблюдений сверхновых звёзд типа Ia был сделан вывод, что расширение Вселенной ускоряется со временем. Затем эти наблюдения были подкреплены другими источниками: измерениями реликтового излучения , гравитационного линзирования , нуклеосинтеза Большого Взрыва . Все полученные данные хорошо вписываются в лямбда-CDM модель .

Сверхновые звёзды и ускоряющаяся Вселенная

Космологическая константа имеет отрицательное давление, равное её энергетической плотности. Причины, по которым космологическая константа имеет отрицательное давление, вытекают из классической термодинамики. Количество энергии, заключённое в «коробке с вакуумом» объёма V , равняется ρV , где ρ - энергетическая плотность космологической константы. Увеличение объёма «коробки» (dV положительно) приводит к возрастанию её внутренней энергии, а это означает выполнение ею отрицательной работы. Так как работа, выполняемая изменением объёма dV , равняется pdV , где p - давление, то p отрицательно и, фактически, p = −ρ (коэффициент с², связывающий массу и энергию, приравнен 1).

Важнейшая нерешённая проблема современной физики состоит в том, что большинство квантовых теорий поля , основываясь на энергии квантового вакуума, предсказывают громадное значение космологической константы - на многие порядки превосходящее допустимое по космологическим представлениям. Обычная формула квантовой теории поля для суммирования вакуумных нулевых колебаний поля (с обрезанием по волновому числу колебательных мод, соответствующему планковской длине), даёт огромную плотность энергии вакуума. Это значение, следовательно, должно быть скомпенсировано неким действием, почти равным (но не точно равным) по модулю, но имеющим противоположный знак. Некоторые теории суперсимметрии (SATHISH) требуют, чтобы космологическая константа в точности равнялась нулю, что также не способствует разрешению проблемы. Такова сущность «проблемы космологической константы», труднейшей проблемы «тонкой настройки» в современной физике: не найдено ни одного способа вывести из физики элементарных частиц чрезвычайно малое значение космологической константы, определённое в космологии. Некоторые физики, включая Стивена Вайнберга , считают т. н. «антропный принцип » наилучшим объяснением наблюдаемого тонкого баланса энергии квантового вакуума.

Несмотря на эти проблемы, космологическая константа - это во многих отношениях самое экономное решение проблемы ускоряющейся Вселенной. Единственное числовое значение объясняет множество наблюдений. Поэтому нынешняя общепринятая космологическая модель (лямбда-CDM модель) включает в себя космологическую константу как существенный элемент.

Квинтэссенция

Альтернативный подход был предложен в 1987 году немецким физиком-теоретиком Кристофом Веттерихом . Веттерих исходил из предположения, что тёмная энергия - это своего рода частицеподобные возбуждения некоего динамического скалярного поля , называемого квинтэссенцией . Отличие от космологической константы в том, что плотность квинтэссенции может варьироваться в пространстве и времени. Чтобы квинтэссенция не могла «собираться» и формировать крупномасштабные структуры по примеру обычной материи (звёзды и т. п.), она должна быть очень лёгкой, то есть иметь большую комптоновскую длину волны .

Никаких свидетельств существования квинтэссенции пока не обнаружено, но исключить такое существование нельзя. Гипотеза квинтэссенции предсказывает чуть более медленное ускорение Вселенной, в сравнении с гипотезой космологической константы. Некоторые учёные полагают, что наилучшим свидетельством в пользу квинтэссенции явились бы нарушения принципа эквивалентности Эйнштейна и вариации фундаментальных констант в пространстве или времени. Существование скалярных полей предсказывается стандартной моделью и теорией струн , но при этом возникает проблема, аналогичная варианту с космологической константой: теория ренормализации предсказывает, что скалярные поля должны приобретать значительную массу.

Проблема космического совпадения ставит вопрос, почему ускорение Вселенной началось именно в определенный момент времени. Если бы ускорение во Вселенной началось раньше этого момента, звёзды и галактики просто не успели бы сформироваться, и у жизни не было бы никаких шансов на возникновение, по крайней мере, в известной нам форме. Сторонники «антропного принципа » считают этот факт наилучшим аргументом в пользу своих построений. Впрочем, многие модели квинтэссенции предусматривают так называемое «следящее поведение», которое решает эту проблему. В этих моделях поле квинтэссенции имеет плотность, которая подстраивается к плотности излучения (не достигая её) до того момента развития Большого Взрыва, когда складывается равновесие вещества и излучения. После этого момента квинтэссенция начинает вести себя как искомая «тёмная энергия» и в конце концов господствует во Вселенной. Такое развитие естественным образом устанавливает низкое значение уровня тёмной энергии.

С другой стороны, тёмная энергия может со временем рассеяться или даже сменить отталкивающее действие на притягивающее. В этом случае гравитация возобладает и приведёт Вселенную к «Большому Сжатию ». Некоторые сценарии предполагают «циклическую модель» Вселенной. Хотя эти гипотезы пока не подтверждаются наблюдениями, они и не отвергаются полностью. Решающую роль в установлении конечной судьбы Вселенной (развивающейся по теории Большого Взрыва) должны сыграть точные измерения темпа ускорения.

Ускоренное расширение Вселенной было открыто в 1998 году при наблюдениях за сверхновыми типа Ia . За это открытие Сол Перлмуттер , Брайан П. Шмидт и Адам Рисс получили премию Шао по астрономии за 2006 год и Нобелевскую премию по физике за 2011 год.

См. также

Примечания

Ссылки

  • Тёмная энергия вблизи нас - популярная брошюра, А. Д. Чернина, ГАИШ МГУ.
  • A.Д. Чернин: Физический вакуум и космическая анти-гравитация
  • Документальный фильм - Темная материя, темная энергия (2008)
  • A.Д. Чернин. Темная энергия и всемирное антитяготение. // УФН , 178 , 267 (2008).
  • В. Н. Лукаш, В. А. Рубаков. Темная энергия: мифы и реальность. // УФН , 178 , 301 (2008). (Комментарий к статье А. Д. Чернина)
  • Robert R. Caldwell, Marc Kamionkowski, Nevin N. Weinberg, Phantom Energy and Cosmic Doomsday (astro-ph:0302506)
  • Марк Тродден , Джонатан Фэн . Темные миры

Wikimedia Foundation . 2010 .

Смотреть что такое "Тёмная энергия" в других словарях:

    ТЁМНАЯ ЭНЕРГИЯ - (ТЭ) странная энергия небарионного мира (см.), присутствующая в нашей Вселенной и проявляющаяся в виде антигравитации способности «отталкиваться» от обычной материи. В результате многочисленных (500 000 за период с 1995 по 2005 г.) наблюдений с … Большая политехническая энциклопедия

Темная энергия - вид энергии, «космологическая постоянная», существование которой постулируется математической моделью Вселенной, но о которой практически ничего не известно. Оказалось, что Вселенная, как полагал Эйнштейн, а до него - Ньютон, не стоит на месте, а постоянно расширяется. Причем расширяется с нарастающим темпом. Никаких свидетельств существования темной энергии пока нет, но в ней, почему-то, никто не сомневается. Темная энергия играет важную роль в судьбе Вселенной: закончится ли она обратным Большим Взрывом или будет расширяться вечно.

Глядя на нашу Вселенную сегодня, очень легко прийти в восторг от увиденного. Звезды на нашем ночном небе - лишь малая часть, несколько тысячи из сотен миллиардов от того, что присутствует в нашем Млечном Пути. Сам - лишь одна-одинешенька галактика из триллионов присутствующих, в наблюдаемой Вселенной, которая простирается во всех направлениях примерно на 46 миллиардов световых лет. И все это началось около 13,8 миллиарда лет назад из горячего, плотного, быстрого, расширяющегося состояния, известного как Большой Взрыв.

Вселенная – это не только бескрайние просторы тьмы и триллионов галактик, содержащих многие миллиарды звезд и многие миллиарды планет. На самом деле здесь все гораздо сложнее. Каждая отдельно взятая галактика, как и отдельно взятое галактическое скопление, соединяются с так называемой гигантской межгалактической паутиной, чьи невидимые нити состоят из темной материи. Понимаем, представить это довольно сложно, однако совсем недавно ученые благодаря весьма хитроумному способу использования метода гравитационного линзирования смогли разглядеть некоторые из этих нитей.

Существует три варианта объяснения сущности тёмной энергии:

К настоящему времени (2017 год) все известные надёжные наблюдательные данные не противоречат первой гипотезе , так что она принимается в космологии как стандартная . Окончательный выбор между двумя вариантами требует очень длительных и высокоточных измерений скорости расширения Вселенной, чтобы понять, как эта скорость изменяется со временем. Темпы расширения Вселенной описываются космологическим уравнением состояния . Разрешение уравнения состояния для тёмной энергии является одной из самых насущных задач современной наблюдательной космологии .

Согласно опубликованным в марте 2013 года данным наблюдений космической обсерватории «Планк », общая масса-энергия наблюдаемой Вселенной на 95,1 % состоит из тёмной энергии (68,3 %) и тёмной материи (26,8 %) .

Энциклопедичный YouTube

  • 1 / 5

    На основании проведённых в конце 1990-х годов наблюдений сверхновых звёзд типа Ia был сделан вывод, что расширение Вселенной ускоряется со временем. Затем эти наблюдения были подкреплены другими источниками: измерениями реликтового излучения , гравитационного линзирования , нуклеосинтеза Большого Взрыва . Все полученные данные хорошо вписываются в лямбда-CDM модель .

    Космологическая константа имеет отрицательное давление, равное её энергетической плотности. Причины, по которым космологическая константа имеет отрицательное давление, вытекают из классической термодинамики. Количество энергии, заключённое в «коробке с вакуумом» объёма V {\displaystyle V} , равняется ρ V {\displaystyle \rho V} , где ρ {\displaystyle \rho } - энергетическая плотность космологической константы. Увеличение объёма «коробки» ( d V {\displaystyle dV} положительно) приводит к возрастанию её внутренней энергии, а это означает выполнение ею отрицательной работы. Так как работа, выполняемая изменением объёма d V {\displaystyle dV} , равняется p d V {\displaystyle pdV} , где p {\displaystyle p} - давление, то p {\displaystyle p} - отрицательно и, фактически, p = − ρ {\displaystyle p=-\rho } (коэффициент c 2 {\displaystyle c^{2}} , связывающий массу и энергию, приравнен 1).

    Важнейшая нерешённая проблема современной физики состоит в том, что большинство квантовых теорий поля , основываясь на энергии квантового вакуума , предсказывают громадное значение космологической константы - на многие порядки превосходящее допустимое по космологическим представлениям. Обычная формула квантовой теории поля для суммирования вакуумных нулевых колебаний поля (с обрезанием по волновому числу колебательных мод, соответствующему планковской длине), даёт огромную плотность энергии вакуума. Это значение, следовательно, должно быть скомпенсировано неким действием, почти равным (но не точно равным) по модулю, но имеющим противоположный знак. Некоторые теории суперсимметрии (SATHISH) требуют, чтобы космологическая константа в точности равнялась нулю, что также не способствует разрешению проблемы. Такова сущность «проблемы космологической константы », труднейшей проблемы «тонкой настройки » в современной физике: не найдено ни одного способа вывести из физики элементарных частиц чрезвычайно малое значение космологической константы, определённое в космологии. Некоторые физики, включая Стивена Вайнберга , считают т. н. «антропный принцип » наилучшим объяснением наблюдаемого тонкого баланса энергии квантового вакуума.

    Несмотря на эти проблемы, космологическая константа - это во многих отношениях самое экономное решение проблемы ускоряющейся Вселенной. Единственное числовое значение объясняет множество наблюдений. Поэтому нынешняя общепринятая космологическая модель (лямбда-CDM модель) включает в себя космологическую константу как существенный элемент.

    Квинтэссенция

    Альтернативный подход был предложен в 1987 году немецким физиком-теоретиком Кристофом Веттерихом . Веттерих исходил из предположения, что тёмная энергия - это своего рода частицеподобные возбуждения некоего динамического скалярного поля , называемого «квинтэссенцией» . Отличие от космологической константы в том, что плотность квинтэссенции может варьироваться в пространстве и времени. Чтобы квинтэссенция не могла «собираться» и формировать крупномасштабные структуры по примеру обычной материи (звёзды и т. п.), она должна быть очень лёгкой, то есть иметь большую комптоновскую длину волны .

    Никаких свидетельств существования квинтэссенции пока не обнаружено, но исключить такое существование нельзя. Гипотеза квинтэссенции предсказывает чуть более медленное ускорение Вселенной, в сравнении с гипотезой космологической константы. Некоторые учёные полагают, что наилучшим свидетельством в пользу квинтэссенции явились бы нарушения принципа эквивалентности Эйнштейна и вариации фундаментальных констант в пространстве или времени. Существование скалярных полей предсказывается стандартной моделью и теорией струн , но при этом возникает проблема, аналогичная варианту с космологической константой: теория ренормализации предсказывает, что скалярные поля должны приобретать значительную массу.

    Проблема космического совпадения ставит вопрос, почему ускорение Вселенной началось именно в определённый момент времени. Если бы ускорение во Вселенной началось раньше этого момента, звёзды и галактики просто не успели бы сформироваться, и у жизни не было бы никаких шансов на возникновение, по крайней мере, в известной нам форме. Сторонники «антропного принципа » считают этот факт наилучшим аргументом в пользу своих построений. Впрочем, многие модели квинтэссенции предусматривают так называемое «следящее поведение», которое решает эту проблему. В этих моделях поле квинтэссенции имеет плотность, которая подстраивается к плотности излучения (не достигая её) до того момента развития Большого Взрыва, когда складывается равновесие вещества и излучения. После этого момента квинтэссенция начинает вести себя как искомая «тёмная энергия» и в конце концов господствует во Вселенной. Такое развитие естественным образом устанавливает низкое значение уровня тёмной энергии.

    Проявление неизвестных свойств гравитации

    Имеется гипотеза, что тёмной энергии нет вообще, а ускоренное расширение Вселенной объясняется неизвестными свойствами сил гравитации , которые начинают проявляться на расстояниях порядка размера видимой части Вселенной .

    Последствия для судьбы Вселенной

    По имеющимся оценкам, ускоряющееся расширение Вселенной началось приблизительно 5 миллиардов лет назад. Предполагается, что до этого расширение замедлялось благодаря гравитационному действию тёмной материи и барионной материи. Плотность барионной материи в расширяющейся Вселенной уменьшается быстрее, чем плотность тёмной энергии. В конце концов, тёмная энергия начинает преобладать. Например, когда объём Вселенной удваивается, плотность барионной материи уменьшается вдвое, а плотность тёмной энергии остается почти неизменной (или точно неизменной - в варианте с космологической константой).

    Если ускоряющееся расширение Вселенной будет продолжаться бесконечно, то в результате галактики за пределами нашего Сверхскопления галактик рано или поздно выйдут за горизонт событий и станут для нас невидимыми, поскольку их относительная скорость превысит скорость света . Это не является нарушением специальной теории относительности . На самом деле невозможно даже определить «относительную скорость» в искривлённом пространстве-времени. Относительная скорость имеет смысл и может быть определена только в плоском пространстве-времени, или на достаточно малом (стремящемся к нулю) участке искривлённого пространства-времени. Любая форма коммуникации далее пределов горизонта событий становится невозможной, и всякий контакт между объектами теряется.

    В 30-х годах ХХ в. швейцарец Ф. Цвикки наблюдал за одним из самых больших галактических скоплений в созвездии Волосы Вероники. Из наблюдений выяснилось, что видимая скопления гораздо меньше существующей. Эти данные подтвердились через сорок лет Верой Рубин. Стало понятно, что некая тёмная материя и наполняют основной массой и галактическое пространство, и любое другое.

    Наличие тёмной материи начали предполагать исходя из некоторых наблюдении:

    • Скорости вращения не убывают от центра к краям. Убывание скорости должно происходить, если галактическая масса соответствует видимой.
    • Исследования спутников галактик и шаровых скоплений показывали, что вся масса галактики больше общей массы её звёзд и других составляющих
    • Двойные галактические системы и скопления обладали большей долей тёмной материи
    • В эллиптических галактиках звёздной массы не хватит, чтобы удерживать горячий газ

    Из всех наблюдений выявились некоторые свойства таинственного вещества. Оно может взаимодействовать с обычным веществом. Тёмная материя в несколько раз плотнее барионного, и захватывает его частицы посредством гравитационных ям. Вследствие этого происходит свечение.

    Вокруг нашего светила, на расстояниях до 13 тыс. св. лет, больших объёмов тёмной материи не выявлено, хотя, по расчётам, концентрация её должна быть порядка 0,5 кг на объём Земли.

    Обсерватория «Планк» в 2013 году опубликовала данные о составе наблюдаемой Вселенной. Обычная (барионная) материя составляет 4,9%, тёмная – 26,8%, а тёмная энергия – 68,3%. Из этого очевидно, что тёмная материя и тёмная энергия - основа нашей Вселенной.

    Что входит в тёмную материю (теории)

    • Барионная тёмная материя. Вполне логично допущение, что эта материя обычная, но плохо взаимодействующая электромагнитным образом. Поэтому обнаружить её не удаётся. Состав этого вещества может быть таким: звёзды-карлики, тёмные гало, нейтронные звёзды, чёрные дыры. Возможно присутствие звёзд кварковых и преонных, но они имеют статус объектов гипотетических. Такой вариант объяснения тёмной материи следует из космологии Большого взрыва. Исходя из этого, получается, что концентрация лёгких элементов должна быть резко отличной от наблюдаемой.
    • Небарионная тёмная материя. Предполагаемых объектов такого вещества достаточно. Но, конечно, всё это – теоретические модели.
    • Лёгкие нейтрино. Эти частицы реально существуют, и этот факт доказан. Считается, что их число во Вселенной аналогично числу фотонов. Хотя они и обладают очень малой массой, но общее число вполне может влиять на динамику пространства. Их масса в диапазоне 10 -2 – 10 -3 эВ. После производства некоторых экспериментов выяснилось, что лёгкие нейтрино не могут быть доминирующей частью тёмной материи.
    • Тяжёлые нейтрино. Эти нейтрино названы стерильными за неспособность слабого взаимодействия. Изученные свойства этих частиц таковы, что они вполне способны составить значительную часть тёмной материи. Параметры их масс - 10 -1 – 10 -4 эВ.
    • Аксионы. Такой тип частиц относится к гипотетическим нейтральным. Они введены в квантовую хромодинамику для решения некоторых проблем. Возможно, что они составляют существенную часть тёмной материи, несмотря на небольшую массу - 10 -5 эВ.
    • Суперсимметричные частицы. Теоретически существует одна такая частица - LSP. Она стабильная, и не участвует в электромагнитных и сильных взаимодействиях. Ею может быть гравитино, фотино, хиггсино и некоторые другие.
    • Космионы. Такие частицы ввели в физику, чтобы разрешить проблемы солнечных нейтрино. Но, после разрешения некоторых теорий, эти частицы, вероятно, исключат из числа претендентов, составляющих тёмную материю.
    • Дефекты пространства-времени. В вакуумном поле Вселенной могли происходить энергетические скачки. Результатом этого могла стать различная выстроенность скалярного поля. При взаимодействии областей, имеющих различную ориентацию, образовывались дефекты разных конфигураций. Объекты, полученные при этом, наделены большой массой. Они вполне могли бы стать доминирующей составляющей тёмной материи. Но пока такие частицы не обнаружены.

    Классификация

    Начальные стадии развития Вселенной характерны термодинамическим равновесием между частицами тёмной материи и космической плазмы. В какой-то момент началось снижение температуры, из-за чего изменились параметры пролёта частиц в плазме. Все взаимодействия с барионными частицами прекратились. Исходя из значений температуры, при которых это случилось, тёмная материя разделяется на три типа:

    1. Горячая. Такой параметр тёмной материи получился из-за многократного превышения энергии частиц над их массой, случившегося в точке выхода из равновесия.
    2. Холодная. Это частицы, вылетевшие из плазмы в нерелятивистском состоянии, то есть, не имеющие околосветовых скоростей. На роль таких частиц претендует класс вимпов – это массивные, но слабо взаимодействующие частицы. Они тоже пока существуют только в умах учёных. Они имеют приличную массу – больше десятков ГэВ – и остаточную концентрацию, которая способна сбалансировать энергии современной Вселенной. Сила их взаимодействия с барионным веществом позволяет надеяться на обнаружение их в прямом виде. Из теоретических разработок следует, что тёмная материяв любой галактике должна особенно концентрироваться в её центре. Но астрономические наблюдения опровергают это, показывая, что она собирается в гало вокруг галактик и наполняет межгалактические пустоты.
    3. Тёплая. Такой тип материи составляют частицы, имеющие массу, не меньше 1 эВ. На выходе из равновесного состояния такие частицы были релятивистские. Они могли образоваться во время перехода из одной стадии расширения Вселенной в другую. Возможными кандидатами на роль такого типа материи стали нейтрино и LSP-гравитино.

    Изучение тёмной материи

    Пока известно о трёх методах, позволяющих производить прямые астрономические наблюдения.

    1. Динамический. Изучаются радиальные скорости галактик в их скоплениях при помощи современных приборов.
    2. Газодинамический. Исследуется рентгеновское излучение горячих газов скоплений.
    3. Расчёт слабого гравитационного линзирования . Для этого метода необходимы точные изображения очень удалённых крупнейших скоплений галактик.

    Фактическое обнаружение частиц

    Все частицы тёмной материи не имеют электрического заряда. Это является главной трудностью в их поиске, существующем в двух вариантах.

    1. Прямой. Используя наземную аппаратуру, проводятся изучения следствий, вытекающих из взаимодействия тёмных частиц с электронами и ядрами атомов.
    2. Косвенный. Отыскиваются возможные потоки вторичных частиц, возникших в результате различных действий, например аннигиляции материи.

    Всё усложняющиеся наблюдения учёных за нашим миром, позволяют сделать вывод, что большая часть его нам неведома. 95% всего наполнения Вселенной – интересная загадка, которую ещё предстоит решить.

    "Информация, положенная в основу Ииссиидиологии, призвана в корне изменить всё ваше нынешнее видение мира, который вместе со всем, что в нём находится, - от минералов, растений, животных и человека до далёких Звёзд и Галактик - в действительности представляет собой невообразимо сложную и чрезвычайно динамичную Иллюзию, не более реальную, чем ваш сегодняшний сон".

    Введение.

    1. Подсчёт массы вселенной.

    2. Тёмная материя.

    3. Из чего состоит масса вселенной.

    4. Темная энергия.

    5. Тёмная материя и тёмная энергия с точки зрения ииссиидиологии.

    Заключение.

    Список литературы.

    Введение

    Видимое нами вещество — лишь малая часть того, из чего состоит наша Вселенная. Все остальное — тёмная материя итёмная энергия . Цель реферата - попытка автора реферата понять, что представляет собой тёмная материя и тёмная энергия с точки зрения учёных, и как объясняет природу тёмной материи и тёмной энергии ииссиидиология, которая даёт нам новейшие космологические представления о Вселенной и человеке.

    1. Подсчёт массы вселенной

    После открытия в 1929 году Эдвардом Хабблом красного смещения в спектрах удаленных галактик стало ясно, что вселенная расширяется. Силы гравитационного притяжения, действующие между отдельными частями вселенной, стремятся затормозить разбегание этих частей.

    Всё зависит от массы вселенной. Если масса достаточно велика, то силы тяготения постепенно остановят расширение вселенной, и оно сменится сжатием. В результате вселенная, в конце концов, опять «схлопнется» в точку, из которой когда-то начала расширяться. То есть, если масса меньше некоторой критической массы, то расширение будет продолжаться вечно, а если больше, то вселенная начнёт сжиматься.

    Было рассчитано значение критической средней плотности вселенной, которое соответствует примерно 10-29 г/куб.см или в среднем пяти нуклонам на кубический метр. Разными методами сотни раз измеряли и подсчитывали усреднённую по объёму вселенной концентрацию нуклонов. Результаты таких измерений несколько различаются, но качественный вывод неизменен: значение плотности вселенной едва дотягивает до нескольких процентов от критической плотности.

    2. Тёмная материя

    В середине 30-х годов XX века швейцарский астроном Фриц Цвикки измерил скорости, с которыми галактики скопления «Волосы Вероники» (а это одно из самых больших известных нам скоплений, оно включает в себя тысячи галактик) движутся вокруг общего центра. Скорости галактик оказались гораздо больше, чем можно было ожидать, исходя из наблюдаемой суммарной массы скопления. Это означало, что истинная масса скопления «Волосы Вероники» гораздо больше видимой. Основное количество материи остается невидимой и недоступной для прямых наблюдений, проявляя себя только гравитационно, то есть только как масса.

    О наличии скрытой массы в скоплениях галактик свидетельствуют также эксперименты по так называемому гравитационному линзированию. В соответствии с теорией относительности, любая масса деформирует пространство и подобно линзе искажает прямолинейный ход лучей света. По искажению изображения галактики можно рассчитать распределение вещества в скоплении-линзе и измерить тем самым его полную массу. Рассчитанная масса оказывается всегда во много раз больше, нежели вклад видимого вещества скопления.

    В 70-е годы американский астроном Вера Рубин изучала скорости вращения вокруг галактического центра вещества, расположенного на периферии галактик. В соответствии с законами Кеплера (а они напрямую следуют из закона всемирного тяготения), при движении от центра галактики к ее периферии скорость вращения галактических объектов должна убывать обратно пропорционально квадратному корню из расстояния до центра. Измерения же показали, что для многих галактик эта скорость остается почти постоянной на весьма значительном удалении от центра.

    Эти результаты можно истолковать только одним способом: плотность вещества в таких галактиках не убывает при движении от центра, а остается почти неизменной. Поскольку плотность видимого вещества (содержащегося в звездах и межзвездном газе) быстро падает к периферии галактики, недостающую плотность должно обеспечивать нечто , чего мы по каким-то причинам увидеть не можем. Для количественного объяснения наблюдаемых зависимостей скорости вращения от расстояния до центра галактик требуется, чтобы этого невидимого «чего-то» было примерно в 10 раз больше, чем обычного видимого вещества. Это «нечто» получило название «темная материя» (по-английски «dark matter») и до сих пор остается самой интригующей загадкой в астрофизике.

    Объяснить формирование галактик после Большого взрыва без тёмной материи также оказалось невозможно . Силы гравитационного притяжения, которые действовали между разлетающимися осколками возникшей при взрыве материи, не могли скомпенсировать кинетическую энергию разлета. Вещество просто не должно было собраться в галактики, которые мы, тем не менее, наблюдаем в современную эпоху. Однако, если предположить, что частицы обычного вещества в ранней вселенной были перемешаны с частицами невидимой темной материи, то в расчетах всё становится на свои места, и формирование галактик из звезд, а затем скоплений из галактик, становится возможным. При этом, как показывают вычисления, сначала в галактики скучивалось огромное количество частиц темной материи и только потом, за счет сил тяготения, на них собирались элементы обычного вещества, общая масса которого составляла лишь несколько процентов от полной массы вселенной.

    Наконец, общая теория относительности однозначно связывает темп расширения вселенной со средней плотностью вещества, заключенного в ней. В предположении о том, что средняя кривизна пространства равна нулю, то есть в нем действует геометрия Эвклида, а не Лобачевского (что надежно проверено, например, в экспериментах с реликтовым излучением), эта плотность должна быть равна 10-29 граммам на кубический сантиметр.

    Плотность же видимого вещества примерно в 20 раз меньше. Недостающие 95% от массы вселенной и есть темная материя. Измеренное из скорости расширения вселенной значение плотности равно критическому . Если в действительности плотность вселенной в точности равна критической, это не может быть случайным совпадением, а представляет собой следствие какого-то фундаментального свойства нашего мира, которое еще предстоит понять и осмыслить.

    3. Из чего состоит масса вселенной

    Истинная масса вселенной оказалась намного больше видимой массы, заключенной в звездах и газопылевых облаках и, скорее всего, близка к критической. А возможно, в точности равна ей. Видимый мир оказался только небольшой добавкой к чему-то, из чего в действительности состоит Вселенная. Планеты, звезды, галактики, да и мы с вами — всего лишь ширма для громадного «нечто», о котором мы не имеем ни малейшего представления.

    К началу XXI века в результате многолетних наблюдений в экспериментах SuperKamiokande (Япония) и SNO (Канада) было установлено, что у нейтрино масса есть. Стало ясно, что от 0,3% до 3% из 95% скрытой массы заключается в давно знакомых нам нейтрино — пусть масса их чрезвычайно мала, но количество во вселенной примерно в миллиард раз превышает количество нуклонов: в каждом кубическом сантиметре содержится в среднем 300 нейтрино.

    Оставшиеся 92-95% скрытой массы состоят из двух частей — темной материи и темной энергии . Незначительную долю темной материи составляет обычное барионное вещество, построенное из нуклонов, за остаток отвечают, по-видимому, какие-то неизвестные массивные слабо взаимодействующие частицы (так называемая холодная темная материя).

    Получилось, что масса Вселенной имеет следующий состав:

      Видимое вещество - 5%

      Нейтрино - 0,3 - 3%

      Барионная тёмная материя - 4 - 5%

      Небарионная тёмная материя - 20-25%

      Тёмная энергия - 65-70%

    4. Темная энергия

    Инфляционная космология не предсказывала перехода замедляющегося расширения Вселенной в ускоренное. А когда астрофизики открыли это явление, наблюдая за вспышками далеких сверхновых звезд, стандартная космология даже не знала, что с этим делать. Гипотезу темной энергии выдвинули просто для того, чтобы как-то привязать к теории парадоксальные результаты этих наблюдений.

    В начале прошлого века Альберт Эйнштейн, желая обеспечить космологической модели в общей теории относительности независимость от времени, ввел в уравнения теории так называемую космологическую постоянную, которую обозначил греческой буквой «лямбда» — Λ. После того, как было открыто расширение вселенной, надобность в ней отпала. А.Эйнштейн назвал космологическую постоянную Λ своей самой большой научной ошибкой.

    Однако спустя десятилетия выяснилось, что постоянная Хаббла, которая определяет темп расширения вселенной, меняется со временем, причем ее зависимость от времени можно объяснить, подбирая величину той самой «ошибочной» эйнштейновской постоянной Λ, которая вносит вклад в скрытую плотность вселенной. Эту часть скрытой массы и стали называть «темная энергия».

    Тёмная энергия равномерно распределена по Вселенной в отличие от обычного вещества и других форм темной материи. Она является антигравитационным полем неизвестной природы - за счет ее присутствия темп расширения вселенной растет. Тёмная энергия заставляет нашу Вселенную расширяться по экспоненте, периодически удваивая размеры.

    В результате плотность материи и излучения постоянно падает, гравитационное искривление пространства слабеет, а его геометрия становится все более плоской. Темная энергия как бы расталкивает саму себя, ускоряя при этом и разбегание обычной материи, собранной в галактиках. А еще темная энергия обладает отрицательным давлением, благодаря которому в веществе возникает сила, препятствующая его растяжению.

    Главный кандидат на роль темной энергии — вакуум . Плотность энергии вакуума не изменяется при расширении вселенной, что и соответствует отрицательному давлению. Еще один кандидат — гипотетическое сверхслабое поле, получившее название квинтэссенция .

    5. Тёмная материя и тёмная энергия с точки зрения ииссиидиологии

    Ииссиидиологическая трактовка природы тёмной материи и тёмной энергии отличается от научной. Сотворение Вселенной намного глубже и осознанней, чем модели образования вселенной, описываемые учёными, такие, как например, модель «Большого взрыва» и её инфляционная интерпретация, а также альтернативная им циклическая теория Стейнхардта и Тьюрока.

    С точки зрения ииссиидиологии одновременно-одномоментно образовалось бесконечное множество разномерностных и разнокачественных Вселенных. Вселенная, которую мы способны воспринимать с помощью наших органов чувств и сконструированных приборов, представляет небольшую часть сведений об одном типе Мироздания - синтетическом, то есть сформированном с помощью фокусной динамики форм самосознаний. Атомы, молекулы, элементарные частицы, животные, растения, минералы, явления природы, планеты, звёзды, галактики, все видимые и невидимые объекты представляют собой разнокачественные формы самосознания, которые своей фокусной динамикой образуют множество взаимосвязей между Информацией и Энергией . От плотности образуемых в самосознании личности энергоинформационных взаимосвязей и качеств задействованной информации зависит мерность и качество субъективной реальности, в которой личность себя самоосознаёт. То есть мерность окружающей нас действительности для каждого из нас разная и зависит от качественности наших мыслей, чувств, психических реакций, текущих представлений.

    Мерность субъективной реальности, которую образует в данный момент всё человечество Земли, соответствует 3-4 мерному диапазону проявления форм самосознания. Переносчиками Энергии и Информации в данном - волновом - диапазоне являются разнокачественные формы самосознаний фотонов и фермионов, которые являются структурной основой нас и окружающей нас действительности. То, что выходит за пределы диапазона их творческой активности, то есть за пределы 3-4 мерности, воспринимается нами как «тёмная материя». В нашем диапазоне большая часть окружающей действительности является «тёмной материей», потому что не образует ни с чем в нашей мерности атомарные энергоинформационные взаимосвязи.

    Бесконечное множество разномерностных, разнокачественных и разнотипных Вселенных образовалось в результате Инициализации Импульс-Потенциалами. И часть ранее уравновешенной информации стала диссонационной, неуравновешенной, то есть обрела стремление к уравновешиванию с информацией - энергию. Между неуравновешенной и уравновешенной частями информации возникло корректирующее взаимодействие - универсальное плазменно-дифференциационное излучение (УПДИ), которое мгновенно определило все потенциальные варианты творческой активности всевозможных форм самосознания для восстановления равновесного состояния информации. Объективно восстановление равновесия происходит одновременно-одномоментно, а субъективно - инерционно - например, в нашем синтетическом типе Мироздания с помощью фокусных динамик всех форм самосознаний образовалось множество разнокачественных пространственно-временных континуумов с разными диапазонами мерности.

    УПДИ является связующей основой между всеми диапазонами мерности и между всеми формами самосознаний. Благодаря УПДИ наш 3-4-мерный диапазон структурирован не только волновыми формами самосознания, но также дооллсовыми (2-3-мерный диапазон) и флаксовыми (4-5-мерный диапазон).

    Другие диапазоны мерности в нашем диапазоне проявляются благодаря УПДИ в виде реликтового излучения, «тёмной энергии», «тёмной материи» . «Тёмная материя» и «тёмная энергия» представляют собой «внутренний» творческий потенциал, сллоогрентно структурирующий УПДИ, без которого невозможно было бы осуществить ни одно энергоинформационное взаимодействие в пространстве и времени. УПДИ в нашем диапазоне мерности является основой для материализации в системе восприятия всей окружающей действительности, то есть той части информации, которая после инициализации стала диссонационной, неуравновешенной и уравновешивается фокусной динамикой разнокачественных форм самосознания.

    Уравновешивая фокусной динамикой диссонационную часть информационного пространства самосознания, мы реализуем свои интересы в данном диапазоне и постепенно начинаем осознавать себя в условиях 4-5-мерного диапазона, где и мы, и окружающая действительность, и «тёмная материя» будут иметь другие характеристики.

    Механизм проявления в самосознания окружающей действительности базируется на изначальном существовании всевозможных вариантов событий, как воспринимаемых, так и недоступных нашему субъективному восприятию. Фокусная динамика каждой формы самосознания одновременно мультиполяризована в бесчисленном множестве всевозможных вариантов развития, инерционно-резонационно и узкоспецифически проявляющихся во всей многомерной сллоогрентности Пространства-Времени посредством ежемгновенных выборов всего множества форм самосознаний, которые уже изначально структурируют своими конфигурациями эту сллоогрентность мироздания.

    Вселенский акт, который представляется учёным как «Большой Взрыв » , с точки зрения ииссиидиологии представляет собой один из бесчисленных вариантов «квантовых смещений», инерционно осуществившихся в фокусной динамике условного наблюдателя этого сллоогрентного (сингулярного, голографичного, одновременно-одномоментного) Акта.

    Главной причиной открытого учёными «ускоренного расширения Вселенной» являются эгллеролифтивные (эволюционные) тенденции фокусных динамик форм самосознаний 3-4-мерного диапазона, которые сопровождаются увеличением энергоинформационных взаимосвязей. Общая фокусная динамика форм самосознаний нынешнего человечества, наращивая энергоинформационные взаимосвязи (в направлении спектра наиболее качественных выборов), последовательно вырывается из ограниченных возможностей квантово-волнового существования в фокусную динамику флаксовых форм самосознаний 4-5-мерного диапазона.

    На смену традиционному всемирному тяготению приходит антитяготение , которое уже сейчас наблюдается в виде ускоренного расширения нашей вселенной и является показателем качественности - общая фокусная динамика человечества и других форм самосознания нашей вселенной последовательно переходит из квантово-волнового 3-4-мерного во флаксовый 4-5-мерный диапазон проявления форм самосознания.Причиной антитяготения является УПДИ с присущей ему универсальной космической энергией, в которую погружены все галактики и все вселенные. Энергия УПДИ - это потенциальная Энергия любого из осуществляемых взаимодействий, присущая самосознаниям форм в состоянии их абсолютной завершённости. Благодаря ей, через более качественные варианты фокусных динамик любых форм самосознаний, создаются абсолютно все эффекты: времени, пространства, гравитации, антигравитации и бесчисленного множества других, о которых мы с вами пока ничего не знаем.

    Открытая астрономами «тёмная энергия» - это и есть энергия УПДИ, которая в каждой точке проявления так называемой «тёмной материи» представляет собой весь Творческий Потенциал Мироздания, все скрытые реализационные возможности, потенциально имеющиеся у любой из форм самосознаний.

    Заключение

    Итак, наша Вселенная на 95% состоит из чего-то, о чём мы почти ничего не знаем. Скрытая часть Вселенной, которую учёные назвали «тёмной материей» и «тёмной энергией», представляет собой энергоинформационные взаимосвязи между атомарными формами самосознаний, выходящие за пределы волнового 3-4-мерного диапазона нашей вселенной, то есть эти взаимосвязи принадлежат формам самосознаний 2-3-мерных и 4-5-мерных вселенных. Общая фокусная динамика форм самосознаний нынешних людей непрерывно обогащается новыми энергоинформационными взаимосвязями и тенденциозно смещается в субъективные реальности, которые структурируют 4-5-мерные вселенные.

    Опыт показывает, что все загадки, которые ставила перед человечеством природа, рано или поздно разрешались с помощью совершенно новых знаний и понятий, о которых человечество прежде не имело никакого представления. На данный момент таким новейшим знанием является ииссиидиология.

    Список литературы:

      «Удивительная история черных дыр» Алексей Левин. «Популярная механика» №11, 2005. http://elementy.ru/lib/164648

      О.Орис. Основы Ииссиидиологии. Новейшие космологические представления о Вселенной и человеке. Том первый. Крым, 2013 год. http://www.ayfaar.org/iissiidiology/books

      О.Орис. Основы Ииссиидиологии. Новейшие космологические представления о Вселенной и человеке. Том второй. Крым, 2013 год.

Статьи по теме: