Свет и цвет: основы основ. Мастер-класс «Понимание цвета» ч.2

Мы воспринимаем цвет, как атрибут любого материального объекта, а свет – как фактор, который способен его изменять. Помидор красный, трава зеленая, и свет может лишь добавлять им оттенки или оттенять, верно?.. Не верно!

Цвета как такового не существует, он – результат совместной работы нашего органа зрения и света. Там где нет света не может быть и цвета, в чем вы легко можете убедиться сами находясь в темном помещении. И дело не в том, что темнота скрывает цвета, а в том, что мы видим цвета только благодаря свету! Звучит несколько революционно, не правда ли? Продолжив чтение этой статьи, вы узнаете еще многое, что нужно знать художнику.

Что такое цвет?
Давайте ненадолго обратимся к физике. Не волнуйтесь, я постараюсь излагать максимально просто и доходчиво. Некоторые окружающие нас объекты имеют свойство излучать или выбрасывать в пространство пучки частиц (или волн) в различных направлениях. Свет – один из видов излучения, и каждый источник света испускает фотоны.

Фотоны – это комбинация из нескольких волн различной длинны (на рисунке x, y, и z)

Путь, по которому фотон летит от источника свет в определенном направлении, мы будем называть лучом

Итак, мы познакомились с несколькими основополагающими фактами. А что же происходит, когда в этой системе появляется человеческий фактор? Нас окружает огромное количество различного вида излучений, но наше зрение способно реагировать только на излучение определенного диапазона длин волн. Например, мы не можем видеть теплового излучения до тех пор, пока его длинна волны не достигнет этого диапазона (раскаленный до красна металл вдруг становится источником света). Часть электромагнитного излучения, которую мы можем видеть, называется видимым светом, или попросту – светом.

Здесь следует напомнить еще об одном факте. Наши глаза имеют два вида клеток-фоторецепторов: колбочки и палочки. Когда на них попадает свет, они реагируют на него и передают в мозг определенную информацию.

Эти самые палочки очень чувствительны к свету, и отвечают за ночное виденье, виденье движущихся объектов и форм. Но для нас более интересны колбочки. Они способны разделять волну на составляющие волны различной длинны, которые мозг грубо интерпретирует как красный (длинный), зеленый (средний) и синий (короткий). В зависимости от длин волн, образующих луч, мы воспринимаем определенную смесь этих трех цветов.

Большинство лучей на своем пути достигают различных объектов, отражаются от них, изменяя свое направление, после чего могут быть отражены повторно (например, в ваших глазах). Как правило, объект, которого достигает луч, не отражает его полностью, наподобие зеркала. Часть волн будет поглощена этим объектом, и уже никогда не достигнет ваших глаз. В результате мы воспринимаем только какую-то часть от оригинального луча, отраженного от объекта. Именно эта оставшаяся часть интерпретируется нашим мозгом как цвет объекта. Различные цвета создаются различными материалами, обладающими различными отражающими и поглощающими свойствами.

Возможно, вам не терпится узнать, какое отношение это все имеет к цветам при рисовании. Ведь, в конце концов, мы лишь рисуем при помощи цветов, а не создаем их физически! Читайте дальше, и очень скоро вам все станет ясно.

Цветовой тон, Насыщенность, Яркость
Вот где может начаться настоящая путаница! Нам интуитивно понятно, что такое тон, насыщенность и яркость, но когда дело доходит до практики (рисования) с их использованием нередко возникают трудности. Тон – это тоже цвет, верно? Насыщенность – показывает насколько “живыми” являются цвета… А яркость сообщает нам темный объект или светлый. Но это все на уровне ощущений. Когда же дело доходит до рисунка, бывает очень трудно применить их на практике. Чтобы справиться с этим, достаточно просто уяснить для себя откуда берутся все эти величины.

Определение Оттенка
Оттенок – это определенный тип цвета. Красный, пурпурный, малиновый – это все оттенки. Они появляются благодаря описанному ранее механизму, когда отраженный свет смешивается в различных пропорциях и мозгом интерпретируется окончательный цвет. То есть, проще говоря, оттенок определяется цветом объекта. Интересный факт: серебристый, золотистый и коричневый оттенками не являются. Серебристый – это сияющий серый, золотистый – сияющий желтый, а коричневый – это обесцвеченный оранжевый.

Вне зависимости от того, сколько раз мы будем инвертировать оттенки, все они образуются комбинацией красного, зеленого и синего цветов. И чем дальше вы будете смещаться по цветовому колесу от любого из них, тем более уникальный цвет получите в результате. Например, 50%-зеленый + 50%-красный дают желтый, но стоит лишь слегка отклониться от этой пропорции, вы получите зеленоватый или красноватый оттенок.

Нет большего или меньшего оттенка относительно друг друга. На цветовом круге они все равнозначны. Следовательно, их можно описывать не в процентном соотношении, и в градусах.

Определение насыщенности
Оттенок не есть цвет (по крайней мере, формально). Все круги на изображении ниже имеют одинаковый оттенок, абсолютно одинаковое положение на цветовом колесе (а так же абсолютно одинаковую яркость!). Так почему же нам кажется, что круги, показанные ниже, разного цвета?

Основная характеристика насыщенности – количество в цвете белой составляющей. Но вы справедливо возразите: не является ли это характеристикой яркости?! Хотите получить более яркий свет – добавьте белого! В результате чего затемненные области станут более насыщенными! Очень запутанно, правда? Вот почему нам нужно уяснить еще кое-что.

Насыщенность это – доминирование какого-либо цвета. На примере ниже круги имеют одинаковые яркость и оттенок. Различаются только пропорции составляющих. Мы не “добавляем белого”, а просто уменьшаем расстояние между составляющими, так, чтобы не преобладала ни одна из них.

Как вы можете догадаться, если в соотношении составляющих разницы нет, то никакой насыщенности и не будет. Все будет белым (о яркости пока речь не идет)

Определение Яркости
Яркость определяет ту наибольшую величину белого, которую способны воспринимать наши глаза. Например, не бывает более синего цвета, чем 100%-синий, точно так же белый не может быть белее 100%-белого цвета.

Шкалы, показанные ниже, не могут быть заполнены более своего максимального значения:

Очевидно, что в этом случае черный образуется полным отсутствием какой-либо цветовой информации

Интересный факт: в темноте колбочки нашего глаза получают минимум информации, что делает нас как бы “слепыми” к цвету. В это время основную визуальную информацию в мозг поставляют палочки, более чувствительные к свету. Но, в силу своей особой восприимчивости к сине-зеленому цвету, они представляют все сине-зеленые поверхности более яркими. Этот эффект носит название эффекта Пуркинье.

Свечение
Помимо величины абсолютной яркости, каждый цвет имеет еще один параметр: свечение. Вы, наверное, замечали, что цвета части объектов кажутся более яркими по сравнению с остальными, даже если все они имеют 100% яркость. Свечение, как раз, показывает насколько ярким является цвет по сравнению с белым.

Если мы преобразуем основные цвета 100%-яркости в градации серого, то заметим, что их яркость резко уменьшится. Белый останется белым, синий превратится в очень-очень темный, а зеленый будет наиболее ярким из всех их. Это происходит из-за индивидуальной чувствительности каждой палочки, и именно по этой причине мы воспринимаем желтый (ярко-красный + очень яркий зеленый) как наиболее яркий цвет. Так же, по этой причине, голубой цвет (темно-синий + очень яркий зеленый) мы иногда называем светло-синим. Свечение очень важно особенно при работе с градациями серого. Например, следует учитывать, что желтый нуждается в более яркой основе, чем остальные цвета, имеющие одинаковую абсолютную яркость.

Модель HSB
В реальной жизни нам не приходится аккуратно и скрупулезно создавать цвета, так как это заняло бы слишком много времени. Тем более, что оттенок, насыщенность и яркость можно скомбинировать в одном очень полезном инструменте. Взгляните на схему ниже. Здесь вы можете заметить совершенно очевидную закономерность изменения цветов. Почему бы не воспользоваться этим?

Если вы – цифровой художник, данная закономерность должна быть вам хорошо знакома. Именно таким образом оттенок, насыщенность и яркость можно объединить в одну модель, получившую название HSB (Hue, Saturation, Brightness). Как она работает?

Теперь, когда вы знаете, что такое оттенок, насыщенность и яркость, вам будет легче объединить их в одну модель. Бегунок (или колесико) с оттенком не зависит от круга/треугольника SB (насыщенности, яркости). Мало того, он является более приоритетным по отношению к параметрам SB. Каждый оттенок может иметь значение яркости и насыщенности, находящееся в определенном диапазоне, причем оба этих значения взаимосвязаны. Вместе они определяют “богатство” какого-либо конкретного оттенка.

SB модель может быть поделена на области с различными свойствами. Если вы научились подбирать нужный оттенок визуально, вам не обязательно что-либо знать конкретные значения насыщенности и яркости. Это позволяет значительно ускорить процесс рисования, и даже сделать его несколько спонтанным.

Не смотря на то, что форма квадрата интуитивно более понятна, лично я предпочитаю треугольник. Он позволяет мне получить больший контроль над “богатством” оттенка в общем, а не регулировать насыщенность и яркость по отдельности (у меня для этого имеются раздельные бегунки).

CMY и RGB
А как быть в случае, когда приходится заниматься традиционным рисованием? Здесь нет удобной программы с цветовым колесом, нет понятных бегунков. Как в этом случае изменять оттенки, насыщенность и яркость пигмента?

Прежде всего, давайте определимся, в чем заключается разница между цифровым и традиционным рисованием. В обоих случаях используются цвета, верно? Проблема заключается в том, что при цифровом рисовании используются разноцветные источники света, создающие более совершенные цвета и обеспечивающие их более четкое восприятие нашими глазами. А при традиционном рисовании мы ограничены цветом, отраженным от пигмента. Отраженный свет здесь выступает как бы в роли посредника между тем, что мы рисуем, и тем, что фактически видим. Можно, конечно, поспорить, какая из сред предоставляет художнику больше творческой свободы, но несомненным остается тот факт, что рисование в цифре лучше взаимодействует с нашим зрительным механизмом.

Итак, для традиционного рисования нам необходимы пигменты. Они не излучают цвет, а вместо этого, поглощают часть падающего на них света, отражая остальную часть в том диапазоне длин волн, которая соответствует их названию. К примеру, красная краска поглощает зеленую и синюю составляющую, отражаю только красную.

Проблема заключается в том, что мы не в силах создать совершенные пигменты, отражающие свет настолько полно, как ели бы он излучался. Так, в качестве компромисса появилась система CMY: голубой не отражает красного, маджента (пурпурный цвет) не отражает зеленого, а желтый не отражает синего. Поэтому, если нам нужно воздействовать целенаправленно только на “синюю” палочку нашего глаза, нам нужно смешать голубой и меджента. Такой пигмент будет отражать самый минимум красного и зеленого. Дополнительный цвет “K”, обозначающий черный, был введен в систему CMY по той причине, что ее оригинальные компоненты при смешении в равных пропорциях не могли обеспечить абсолютно черный цвет.

RGB – аддитивная система, то есть по мере увеличения удельной доли составляющих вы получаете более яркий цвет. CMY – система субтрактивная, в ней с чем меньше объем составляющих – тем цвет ярче.

Четыре правила смешения цветов

Правило 1 – Смешение оттенков
Смешивая два оттенка, вы получаете промежуточный оттенок, находящийся где-то между двумя исходными. Данный принцип действует как при аддитивном так и при субтрактивном смешении.

Правило 2 – Комплементарное смешение
Возможно, вам уже приходилось слышать о комплементарных цветах. Это те цвета, которые лежат на цветовом колесе диаметрально противоположно. Контраст между ними (при условии, что оба оттенка имеют одинаковую яркость) обычно, очень резкий, как между черным и белым. Тем не менее, при смешении они нейтрализуют друг друга.

Смешение комплементарных оттенков дает на выходе нейтральный (серый или сероватый) цвет. Аддитивное смешение двух оттенков со 100%-яркостью дает белый цвет. Субтрактивное – черный.

При субтрактивном методе незначительное добавление комплементарного оттенка является самым легким способом уменьшения насыщенности.

Правило 3 – Смешение насыщенности
При обоих методах смешения (аддитивном и субтрактивном), пропорции компонентов выравниваются, что в результате ведет к уменьшению насыщенности.

Правило 4 – Смешение яркости
Аддитивное смешение дает в итоге более яркий оттенок, субтрактивное – образует оттенок темнее самого светлого из смешиваемых оттенков.

Температура цвета
Существует очень старая и устойчивая традиция разделения цветового колеса на теплую и холодную половину. Мы знаем, что теплые цвета более активны и “дружелюбны”, тогда как холодные - пассивны и мрачны. О психологии восприятия цвета можно написать целую книгу, но проблема в том, что подобное деление не является объективным. Какой цвет является самым теплым? Красный? Желтый? А пурпурный – он теплый или холодный? И где конкретно проходит разделительная линия?

Взгляните на изображение ниже. Показанные здесь круги – красные, и, теоретически все теплые. Так почему же какие-то из них выглядят холоднее чем остальные? Дело в контрасте. Цвет не может быть теплым или холодным. Только теплее или холоднее. Именно поэтому так легко визуально разделить цветовое колесо: здесь видно все цвета сразу, и их легко сравнивать между собой. Но удалите с колеса красный, и на нем больше не будет ни теплых, ни холодных цветов.

Итак, как можно получить более теплый или более холодный оттенок. Каждый оттенок на цветовом колесе имеет своего соседа. Каждый сосед чуть теплее или чуть холоднее другого своего соседа, который, в свою очередь немного холоднее или теплее следующего. Чтобы получить более холодный вариант какого-либо оттенка, смещайтесь в направлении холодного соседа (и наоборот).

Основные правила тонирования
Очень долгое введение получилось? Дайте мне еще чуть-чуть времени, и вы поймете, что все эти долгие рассуждения просто необходимы для успешного уяснения сути всего процесса. Если вы, к примеру, запомните только перечисленные выше правила, вы окажетесь ограниченными только рамками конкретных ситуаций. Но если вы поймете, как эти ситуации возникают, то подобные ограничения исчезнут практически полностью.

Локальные цвета
Основные цвета, не освещаемые каким-либо источником света, называются локальными цветами. А как нам уже известно, не освещаемый объект не может иметь какого-либо цвета. Поэтому лучше немного изменить определение локального цвета. Локальным мы назовем цвет, который не подвержен выраженному влиянию света или тени. То есть локальный цвет вишни – красный, даже если она с одной стороны освещается ярким оранжевым цветом, а с другой – отраженным синим. Локальный цвет – этот тот цвет, с которого следует начинать работу над рисунком.
А как же понимать яркость и насыщенность локального цвета? Яркость определяется воображаемым рассеянным по сцене светом. Чтобы определить общую яркость сцены (интенсивность рассеянного света), поместите ваш объект на белый фон. Оба они будут освещены одним и тем же источником, но объект не может оказаться ярче, чем белый фон (при одинаковых условиях освещения).

Итак, белый фон отражает 100% падающего на него света. Если ваш объект будет казаться боле ярким, чем фон, это будет означать, что он отражает более 100% света (как если бы он сам испускал свет). Следовательно, чем темнее ваше базовое освещение, тем более заметные источники света вы сможете поместить на сцену впоследствии.

А как насчет насыщенности? Если яркость связана с интенсивностью света, насыщенность больше зависит от пропорций его компонентов. Данные пропорции остаются неизменными при изменении интенсивности света (за редкими исключениями, о которых мы поговорим чуть позже). Это как если бы с каждой ложкой сахара мы добавляли в чашку с чаем дополнительную порцию воды. Чай, при этом, не будет становиться слаще.

Источник прямого света
Вот как примерно распределяются освещенные области:

Рассмотрим для уяснения простую сцену, не освещенную каким-либо явным источником света. Земля зеленая, мяч красный, небо…. впрочем, на данный момент это не важно. Если фон очень сильно удален, он не оказывает сколько-нибудь существенного влияния на ваш объект. Мы подобрали определенную яркость и насыщенность, и на данный момент картинка выглядит плоской, двумерной. Вот почему цвета на подобных рисунках называются плоскими. Это – самый простой этап рисования.

Теперь, когда на сцене появился источник света, он заполняет всю сцену. Его интенсивность – яркость – максимальна там, где свет непосредственно контактирует с объектом: полный свет (full light), и полусвет (half light). А области с наименьшей интенсивностью – это те, которых свет достичь не может: основная тень (core shadow), отбрасываемая тень (cast shadow). Чем ярче свет, тем темнее (гуще) тени. Наш локальный цвет становится завершающим (terminator).

Чтобы удержать наш мяч от свободного парения в пространстве, нам нужно создать контактную тень, и создать ее там, куда свет не достигает вовсе. Это будет самый темный участок нашего изображения.

Но наша сцена по-прежнему выглядит… как-то неестественно. Она цветная, радостная, как будто из детской книжки. Но что-то все равно не так. Возможно, вы заметите, что мы использовали здесь только диффузионное отражение. Каждый отдельный луч, падающий на мяч, частично им поглощается, и отражается только красный. Следовательно, в области максимальной яркости света мы получим 100%-красный цвет. И изменить это нет никакой возможности. Это вполне естественная ситуация для матовых поверхностей, и уменьшение насыщенности для получения более яркого красного не сработает.

Но если ситуация естественна, почему сцена выглядит странно? А дело в том, что абсолютно матовые материалы в природе встречаются крайне редко. Практически любой, окружающий нас предмет, отражает хоть какой-то свет в виде блика. Причем блик этот не обязательно должен быть четким и сверкающим. Как правил, он бывает мягким и размытым. Измените свое положение относительно какого-либо объекта поблизости от вас, и если его цвета хотя бы незначительно изменяются при вашем перемещении, то здесь можно говорить о бликовом отражении. Отражение, которое не зависит от вашего положения относительно объекта, называется диффузионным.

Бликовое отражение, как мы выяснили, образуется источником света. Чем источник света сильнее, тем явственнее он просматривается на поверхности объекта. Очень важное значение, при этом, имеет соотношение между бликовыми и диффузионными свойствами материала. Сверкающие объекты, как правило, имеют на своей поверхности очень тонкий прозрачный слой сильно бликующего материала. При этом бликовое и диффузионное отражение между собой практически не смешиваются (третий мяч).

Другими словами, уменьшая насыщенность яркой области (“добавляя в нее белого”), вы не делаете ее более яркой, а добавляете сюда сияние.

Тем не менее, мячи на изображении выше по-прежнему выглядят неестественно (не знали, что существует так много способов создания неестественных цветов?). Теперь они стали выглядеть так, как будто взяты из упражнения по 3D-моделированию. А все потому, что мы использовали для освещения чисто-белый свет, который в природе не встречается. Солнечный свет, прежде чем он достигнет наших глаз, проходит сквозь слои атмосферы, в результате чего в него подмешиваются посторонние цвета.

Волны короткой и средней длинны, как правило, легко рассеиваются. Чем больший путь они преодолевают в толще атмосферы, тем большая его часть рассеивается, и уже никогда не достигнет ваших глаз (по крайней мере, не изменив свое изначальное направление). Поэтому “белые” лучи в нашем случае, будут преимущественно, красноватыми и зеленоватыми. А в самой верхней точки наиболее освещенного участка будет наблюдаться небольшой дефицит синего, обусловленный тем, что цвет солнечного света, сам по себе, теплый.

Так почему же отражение теплого источника света должно быть нейтрально белым? Чтобы избежать ненатурального эффекта 3D-модели, нужно при создании теплого сияния (не важно резкого или мягкого), одновременно уменьшить насыщенность и увеличить температуру. Как уже упоминалось ранее, красные оттенки могут быть как холодными, так и теплыми, поэтому наша красная поверхность вовсе не обязательно должна сразу стать оранжевой или желтой.

Очень важно не использовать сияние в качестве универсального способа сделать изображение более привлекательным. Если вы чувствуете, что используете цвета очень близкие к белому, то объект у вас будет выглядеть сверкающим или мокрым. Учитывайте этот, когда рисуете, например, кожу.

Источники непрямого света
Но что происходит со всем этим рассеянным синеватым светом? Благодаря ему мы видим небо синим. Но, если мы можем видеть этот синий цвет, значит он, все же достигает наших глаз. И не только их! На все объекты вокруг нас падает этот непрямой синий свет, который так же может быть отражен. Он не такой яркий как прямой солнечный свет, но он способен сделать поверхность еще чуть более яркой. Кроме того, если поверхность не абсолютно матовая, она теряет часть насыщенности, и становится более холодной (так как источник нашего непрямого цвета - холодный). Всегда помните, что прямой свет более интенсивный, чем непрямой, и они никогда не смешиваются. Отражение, созданное непрямым источником света, никогда не пересекает терминирующую линию.

Области с наиболее интенсивными отражениями образуются сверкающими поверхностями, но матовые поверхности, такие как, например, почва или земля, так же могут отражаться от объектов.

Общеизвестный факт, что величина контраста уменьшается по мере увеличения расстояния до объекта. Но как обстоит дело с оттенком, насыщенностью и яркостью отдаляющегося объекта? Здесь есть определенные нюансы. По мере удаления объекта, смещения его по направлению к фону, его цветовая информация смешивается со светом, отраженным от неба, не так ли? Отсюда следует:
- оттенок постепенно изменяет свою температуру, смещаясь в сторону оттенка неба;
- яркость постепенно возрастает, стремясь к яркости неба;
- в насыщенность подмешивается шум, что ведет к ее уменьшению; однако, если источник света находится на дальнем плане (передний план затемнен), насыщенность может постепенно увеличиваться по мере приближения к нему объекта.

Чем яснее и чище атмосфера, тем слабее описанный выше эффект. Следовательно, если в воздухе находится большое количество пыли, дыма или наблюдается повышенная влажность, даже находящиеся относительно недалеко объекты изменяют свои свойства довольно резко. Очень распространенная хитрость, к которой прибегают многие художники (и кинематографисты!) – это делать часть одинаковых с виду объектов более чуть размытыми, чуть более светлыми и чуть менее насыщенными. Нашему мозгу они расположенными на некотором удалении. Так достигается ощущение глубины композиции. Однако следует учитывать, что данный прием не сработает на сцене с чистой, прозрачной атмосферой.

Цвет и объем
Правильный выбор цветов обеспечивает правильный объем на изображении. Начинающие художники очень часто начинают свои рисунки именно с объемов, уделяя основное внимание правильному их определению на композиции. Однако, следуя правилам, описанным на данном уроке, у вас не должно возникать проблем определением объемов при помощи цветов. Как это возможно?
- изначальная яркость локальных цветов задает общую яркость всей композиции;
- дивизионный свет и тени насыщенны настолько, насколько насыщен локальный цвет: обесцвеченные тени будут выглядеть ярче при определении объема;
- чем сильнее сияние, тем большей яркостью будет обладать объем;
- непрямой свет не может быть ярче прямого;
- локальный цвет становится терминирующим; с одной его стороны образуется тень, с другой отсвет, что создает естественный контраст.

Как узнать, нужно ли добавлять дополнительные свет или тени? Здесь все зависит от контраста, и вы должны сами решить, что будет больше соответствовать атмосфере вашей композиции. Лучше всего поместить ваш объект поочередно на три фона: черный, белый и 50%-серый. Если он выглядит замечательно на всех из них, то вы все сделали правильно. Так же не плохо было бы для проверки преобразовать ваше изображение в градации серого.

Что следует запомнить
- сильно насыщенные, яркие цвета в природе встречаются редко, приберегите их для цветочков, птичек и всяких волшебных штучек;
- если вам нужно расположить источник света в затемненной области, изменяйте его яркость по принципу градиента;
- если произведенное вами тонирование выглядит слишком цветным, сделайте перерыв, отойдите на некоторое расстояние; у ваших глаз будет возможность немного отдохнуть от этих цветов, после чего они будут восприниматься более актуально; поворот изображение, взгляд на него с различных углов, или отражение его в зеркале так же может дать положительный эффект;
- оставьте чисто-белый цвет для отсветов, а 100%-черный для контактных теней; излишнее увлечение ими значительно снижает их эффективность.

Не нужно больше гадать!
Теперь, когда вы усвоили, что цвет – это всего лишь сигнал, вид информации, можете легко имитировать реальный мир в своих композициях. И не нужно запоминать сотни правил: разобравшись с фундаментальными основами, вы можете воспроизвести окружающее с огромной точностью. Конечно же, не следует воспринимать изложенные выше принципы как единственно верный путь к успеху – искусство есть искусство, и иногда наилучшего результата можно добиться именно нарушив существующие правила.

В одной из следующих статей я познакомлю вас с такими понятиями как множественные и цветные источники света, прозрачность, субповерхностное рассеивание, а так же излучение и преломление света.

Основные признаки цвета: цветовой тон, светлота, насыщенность.

Существует несколько признаков цвета, основных из них ТРИ : цветовой тон, насыщенность и светлота.

Цветовой тон определяет место цвета в спектре ("красный-зеленый-желтый-синий" и т. д.). Это главная характеристика цвета. В физическом смысле ЦВЕТОВОЙ ТОН зависит от длины световой волны. Длинные волны - красная часть спектра. Короткие - сдвиг в сине-фиолетовую сторону. Средняя длина волны - это желтые и зеленые цвета, они наиболее оптимальны для глаза.

В нашем сознании цветовой тон ассоциируется с окраской хорошо знакомых предметов. Многие наименования цветов произошли прямо от объектов с характерным цветом: песочный, морской волны, изумрудный, шоколадный, коралловый, малиновый, вишневый, сливочный. Легко догадаться, что цветовой тон определяется названием цвета (желтый, красный, синий) и зависит от его места в спектре.

Интересно узнать, что натренированный глаз при ярком дневном освещении различает до 180 цветовых тонов и до 10 ступеней (градаций) насыщенности. Вообще, развитый человеческий глаз способен различать около 360 оттенков цвета.

Степень хроматичности цвета определяется насыщенностью . Это степень удаленности цвета от серого той же светлоты. Представьте, как свежую траву у дороги покрывает пыль слой за слоем. Чем больше слоев пыли, чем слабее виден первоначальный чистый зеленый цвет, тем меньше НАСЫЩЕННОСТЬ этого зеленого. Цвета с максимальной насыщенностью - это спектральные цвета, минимальная насыщенность дает полную ахроматику (отсутствие цветового тона).

Изменить насыщенность можно 3 способами:

§ добавлением в спектральный цвет черного,

§ добавлением в спектральный цвет белого,

§ добавлением в спектральный цвет его контрастной пары (например: к красно-оранжевому добавить сине - зеленый)

Третий признак цвета - СВЕТЛОТА . Любые цвета и оттенки, независимо от цветового тона, можно сравнить по светлоте, то есть, определить, какой из них темнее, а какой светлее.

Светлота – это сетосила цвета. Изначально (спектрально) самым светлым является желтый. Самым темным - синий. это положение цвета на шкале от белого до черного. Характеризуется словами "красный темный" или " красный светлый". Для ахроматических максимальной СВЕТЛОТОЙ обладает белый цвет, минимальной - черный.

Светлота - качество, присущее как хроматическим, так и ахроматическим цветам. Светлоту не следует путать с белизной (как качеством цвета предмета).

У художников принято светлотные отношения называть тональными, поэтому не следует путать светлотный и цветовой тон, светотеневой и цветовой строй произведения. Когда говорят, что картина написана в светлых тонах, то прежде всего имеют в виду светлотные отношения, а по цвету она может быть и серо-белой, и розовато-желтой, светло-сиреневой, словом самой разной.

Сравнивать по светлоте можно любые цвета и оттенки: бледно-зеленый с темно-зеленым, розовый с синим, красный с фиолетовым.

Интересно заметить, что красный, розовый, зеленый, коричневый и другие цвета могут быть и светлыми, и темными цветами.

Благодаря тому, что мы помним цвета окружающих нас предметов, мы представляем себе их светлоту. Например, желтый лимон светлее синей скатерти, и мы помним, что желтый цвет светлее синего.

Ахроматические цвета, то есть, серые, белые и черные, характеризуются только светлотой. Различия по светлоте заключаются в том, что одни цвета темнее, а другие светлее.

Любой хроматический цвет может быть сопоставлен по светлоте с ахроматическим цветом.

Можно сравнить цвета: красный и серый, розовый и светло-серый, темно-зеленый и темно-серый, фиолетовый и черный. Ахроматические цвета подобраны по светлоте равными хроматическим.

В данной заметке я хотел рассмотреть зеленый оттенок изображения и «цветовую яркость», как методы, с помощью которых производители проекторов создают то, что мы называем самым ярким режимом проектора, например «Макс. Яркость» или «Динамический».

Предположим, я хоббит, и у меня в норке стоит домашний проектор. Как объяснить мне, что яркость может иметь значение? Ведь «мне хватает». Все просто - нужно на моем 111-м дне рождения склонить меня к показу слайдов под открытым небом...

Естественно, все проекторы для школ, сцен, больших помещений и пр. участвуют в гонке за яркость. Никакая точность цветопередачи не поможет, если вы не можете обеспечить адекватную яркость. Да и откуда взяться точности, если комнатный свет уже размывает цвета, не только снижая контрастность, но и меняя, собственно, оттенок цветов в сторону более бледного.

В связи с этим и сложилась традиция иметь несколько режимов цветопередачи. В самом ярком режиме проектор выдает все люмены, на какие способен, снижая точность цветопередачи. В самом точном режиме точность цветопередачи наилучшая, яркость – наименьшая. Ну и еще один режим должен быть где-то посередине между этими двумя - компромиссный.

Основные виды искажений цветопередачи в самом ярком режиме – это:

  • Низкая цветовая яркость
  • Сильный зеленый оттенок
  • Срезанные плавные переходы у цветов выше 80% IRE
  • Сильная неточность отдельных цветов по оттенку и насыщенности

Наиболее очевидны первые две проблемы, о которых и поговорим, причем в обоих случаях речь идет просто о том, в какой степени производитель был готов пожертвовать цветопередачей ради максимальной яркости. То есть, мы не спрашиваем, пожертвует ли – мы спрашиваем, насколько.

Дело в том, что я, как зритель, хочу , чтобы в самом ярком режиме цветопередача была хуже – тогда я получу более яркое, а значит – более красивое изображение в сложных условиях. Производитель обязан в ярком режим задирать яркость до максимума, сохраняя цветопередачу в таких пределах, чтобы ее неточность не бросалась в глаза и соответствовала разрушительному влиянию внешнего освещения.

Баланс белого

Как известно, цвета принято получать смешением красного, зеленого и синего (R., G., B.). Для получения белого, то есть нейтрального цвета, яркость К., З., С. должна находиться в строгом балансе. Нежелательный оттенок изображения вызван тем, что какой-то из этих элементов имеет запас «лишней яркости» относительно остальных, и производитель может и должен воспользоваться этой лишней яркостью в «самом ярком режиме».

К примеру, у светодиодного проектора, формирующего свет с помощью красного, зеленого и синего светодиодов, один из трех элементов окажется «слабым звеном». К примеру, зеленый слабее остальных, и для проецирования сбалансированной картинки он будет работать на полную мощность, а остальные два - нет. Получается правильный белый цвет.

Теперь производитель создает режим максимальной яркости - он решает сохранить баланс между красным и синим, но снимает их ограничение, отвязывает их от зеленого. Яркость красного и синего возросла, изображение получило пурпурный оттенок той или иной степени заметности.

Допустим, жадность производителя увеличилась и он решил отвязать яркость синего светодиода от красного. Предположим, что синий ярче. И вот, оттенок изображения уже сильно синеватый. Возможно, пользователь уже не захочет использовать такой режим даже в сложных условиях освещения, зато производитель имеет возможность приписать себе дополнительные 25% яркости.

С ламповыми проекторами история аналогичная – ртутная лампа дает существенно больше зеленого, чем нужно. Нужно для чего? Опять же, для точно сбалансированного изображения. Собственно, как работает стандартный трехматричный (R, G, B) метод образования цветов? Сперва мы выделяем из спектра свечения лампы пучки правильного красного, зеленого и синего. Правильного - значит соответствующего стандарту sRGB, например. Далее все идет в соответствии со стандартом: точно известны пропорции смешения цветов: какой яркости должны быть R, G, B для получения нейтрального белого, а также то, что яркость желтого = яркость зеленого + яркость красного.

Тем не менее, чтобы получить белый, нам нужно существенно меньше зеленого, чем у нас есть – часть зеленого мы выкидываем. Сколько яркости мы теряем при этом? 50% - легко! В общем, вы наверняка понимаете, откуда берется дополнительная яркость у обычного лампового проектора в самом ярком режиме… Результат от переизбытка зелени, понятное дело, различен. Тем не менее, нормальная ситуация – когда зеленый оттенок четко выражен. Это компенсируется отчасти и привыканием глаз, а также и без того негативным влиянием фонового освещения. В идеале это должно выглядеть плохо в темном помещении и нормально в освещенном. У всего есть свой предел, и завышение яркости зеленого выше определенного уровня приведет к совсем уж несмотрибельному изображению.

Цветовая яркость

Выше я предполагал, что изображение формируется RGB методом (свет лампы делится на красный, зеленый, синий, из которых и формируется все остальное).

Одноматричная DLP технология может обходиться со светом лампы иначе, но факт: она уходит от одновременного смешения R, G, B и смешивает цвета не в одну единицу времени. Это не может не дать падения эффективности использования лампы - отрицать это было бы странно. Тем не менее, частично позиции удается отыграть благодаря тому, что DLP проекторы могут использовать не только R, G, B цвета.

К примеру, одноматричный проектор может отдельно выделить желтый, который при одновременном формировании изображения трехматричными проекторами был бы просто выкинут, а желтый формировался бы, как и положено по RGB методу смешения цветов, из зеленого и красного.

DLP проектор может создавать белый цвет из чего угодно: из желтого, из пурпурного, из… белого, пропуская свет лампы на экран через прозрачное стеклышко - любой цвет может внести свой вклад. Управляет всем этим сверхразум по имени «BrilliantColor», вся эта ваша классическая система RGB цветосмешения им просто игнорируется. Итак, большинство DLP проекторов - это не RGB устройства!

Тем не менее, стандарты RGB никто не отменял, поэтому в точном режиме BrilliantColor должен под нее подстроиться и неукоснительно ей следовать, на что он вполне способен.

А вот в ярком режиме появляется столько новых возможностей! Вы уже поняли, о чем я - возможности извлечь больше яркости, привнеся какие-нибудь проблемы цветопередачи.

Главное нововведение - мы имеем возможность принести в жертву яркости новые параметры цветопередачи, а именно – яркость цветов. То есть, все точно как в популярном примере: проектор дает 3000 люмен по белому, а красный у него, к примеру, такой, как должен быть у проектора на 800 люмен. Причина уже обозначена: белый получается смешением чего угодно, включая специальный «прозрачный» сегмент.

На практике в этом случае вы включаете презентацию и у вас на фоне белого листа с черным текстом красная линия на графике оказывается в 3 раза темнее, чем должна быть, то есть, становится темно-красной. В освещенном помещении, обращу ваше внимание, темные цвета соответствуют менее контрастным, более размытым цветам.

Действительно, цветовая яркость становится еще одним способом, которым можно было бы снизить точность цветопередачи, получив при высокой яркости разумный компромисс. Тем не менее, производители DLP проекторов часто используют сверхъяркий режим исключительно для того, чтобы сравняться по паспортной яркости с трехматричными конкурентами, а производители трехматричных проекторов тоже используют подобные приемы манипуляции с цифрами, но в других областях. В общем, все вполне обоснованно хотят избавиться от своих недостатков, затыкая их цифрами в спецификациях.

Подход формирования цветов одноматричных проеткоров дает иногда и такой плюс, как более правильный баланс белого на очень высокой яркости. Производители DLP постепенно осваивают и обуздывают своего лихого скакуна по имени BrilliantColor, в результате чего в режимах высокой яркости, когда нет необходимости выводить на экран 100% насыщенные цвета, то есть используются более-менее бледные цвета, которые наиболее распространены, им удается в достаточной степени завуалировать недостаток в цветовой яркости, чтобы он не бросался в глаза в освещенном помещении. К примеру, у 100% насыщенного красного яркость будет 40% от нормы, а у 50% насыщенного - уже 75% от нормы. Тем не менее, при отображении насыщенных цветов нехватка цветовой яркости будет очевидна.

Собственно, «Цветовая Яркость». Позавидовав способности конкурентов так вольно обращаться с цветами и цифрами в той области, которую производители трехматричных LCD проекторов считают своим «коньком», последние придумали себе новый стандарт – “цветовая яркость”. Точнее, “световой поток по цветам”, поскольку в паспорте у проектора не яркость, а люмены. Стандарт говорит о том, что, раз вы измерили яркость проектора по белому, то теперь проверьте ее по красному, зеленому и синему – если их сумма не равна яркости белого, то пусть вам будет грустно. В вышеупомянутом примере я получаю 3000 люмен яркости и 800 люмен цветовой яркости. Другими словами, взятые по отдельности, красный, зеленый и синий оказываются слабы. И не лучше дело обстоит с остальными насыщенными цветами. Как было сказано выше, эти цифры могут не в полной мере отражать то, что мы реально увидим на среднестатистическом изображении, но при отображении красного, зеленого, синего и пр. это будет адекватно. Естественно, трехматричные проекторы, построенные по RGB принципу, красуются заявлением, что “максимальная яркость = цветовая яркость”.

Заключение

Вот они – два ключевых дефекта ярких режимов проектора, о которых стоит помнить, если вам нужно работать в сложных условиях освещения. Именно они делают разницу между адекватным компромиссом и несмотрибельным изображением, вынуждающим вас принципиально отказаться от использования наиболее яркого режима, перейдя на менее яркий.

Параметр «Цветовая яркость» позволяет быстро уловить, в какой степени производитель прибегал к усилению белого у одноматричного проектора, хотя мы не знаем всех тонкостей изображения, которое мы получим в ярком режиме. Тут надо смотреть и на то, в какой степени яркость цветов слаба либо сильна не только на 100%, но и на меньшей насыщенности каждого цвета - ведь такие цвета встречаются чаще.

Параметр «зеленый оттенок» нельзя измерить цветовой температурой, посколько на шкале CIE линия зеленого перпендикулярна линии цветовой температуры (синий-желтый-красный). Получается, что надо смотреть в обзорах диаграмму баланса белого.

Приходится смотреть в обзоры и на диаграммы.

Итак, коротко для справки: изначально свет, как электромагнитное излучение с определённой длиной волны - белый. Но при пропускании его через призму он раскладывается на следующие составляющие его видимые цвета (видимый спектр): к расный, о ранжевый, ж ёлтый, з елёный, г олубой, с иний, ф иолетовый (к аждый о хотник ж елает з нать г де с идит ф азан).

Почему я выделил "видимые "? Особенности строения человеческого глаза позволяют нам различать только эти цвета, оставляя вне поля нашего зрения ультрафиолетовое и инфракрасное излучение. Способность человеческого глаза воспринимать цвет напрямую зависит от способности материи окружающего нас мира поглощать одни световые волны и отражать другие. Почему красное яблоко красное? Потому что поверхность яблока, имея определённый био-химический состав, поглощает все волны видимого спектра, за исключением красного, который от поверхности отражается и, попадая в наш глаз в виде электромагнитного излучения определённой частоты, воспринимается рецепторами и распознаётся мозгом как красный цвет. С зелёным яблоком или оранжевым апельсином ситуация аналогичная, как и со всей материей, которая нас окружает.

Рецепторы человеческого глаза наиболее чувствительны к синему, зелёному и красному цвету видимого спектра. На сегодня существует около 150000 цветовых тонов и оттенков. При этом человек может различать порядка 100 оттенков по цветовому тону, около 500 оттенков серого. Естественно, художники, дизайнеры и т.д. обладают более широким диапазоном цветовосприятия. Все цвета, расположенные в видимом спектре, называются хроматическими.

видимый спектр хроматических цветов

Наряду с этим очевидным является и тот факт, что помимо "цветных" цветов мы также распознаём и "не цветные", "чёрно-белые" цвета. Так вот, оттенки серого цвета в диапазоне "белый - чёрный" называются ахроматическими (бесцветными) из-за отсутствия в них конкретного цветового тона (оттенка видимого спектра). Наиболее ярким ахроматическим цветом является белый, наиболее тёмным - чёрный.

ахроматические цвета

Далее, для правильного понимания терминологии и грамотного использования теоретических знаний на практике необходимо найти различия в понятиях "тон" и "оттенок". Так вот, цветовой тон - характеристика цвета, определяющая его положение в спектре. Синий цвет - это тон, красный цвет - это тоже тон. А оттенок - это разновидность одного цвета, отличающаяся от него как яркостью, светлотой и насыщенностью, так и наличием добавочного цвета, проявляющегося на фоне основного. Светло-голубой и тёмно-голубой - оттенки голубого по насыщенности, а голубовато-зелёный (бирюзовый) - по наличию в голубом добавочного зелёного цвета.

Что такое яркость цвета ? Это характеристика цвета, напрямую зависящая от степени освещённости объекта и характеризующая плотность светового потока, направленного в сторону наблюдателя. Говоря проще, если при всех остальных равных условиях, один и тот же объект последовательно осветить источниками света разной мощности, пропорционально поступающему свету отражённый от объекта свет будет также разной мощности. В итоге одно и то же красное яблоко при ярком свете будет выглядеть ярко красным, а при отсутствии света мы его не увидим вообще. Особенность яркости цвета заключается в том, что при её снижении любой цвет стремится к чёрному.

И ещё: при одинаковых условиях освещённости один и тот же цвет может отличаться яркостью благодаря способности отражать (или поглощать) поступающий свет. Глянцевый чёрный будет ярче, чем матовый чёрный именно потому, что глянец больше отражает поступающий свет, а матовый - больше поглощает.

Светлота, светлота… Как характеристика цвета - существует. Как точное определение - скорее нет. Следуя одним источникам, светлота - степень близости цвета к белому. Согласно другим источникам - субъективная яркость участка изображения, отнесённая к субъективной яркости поверхности, воспринимаемой человеком как белая. Третьи источники относят понятия яркость и светлость цвета к синонимам, что не лишено логики: если при уменьшении яркости цвет стремится к чёрному (становится темнее), то при увеличении яркости цвет будет стремиться к белому (становится светлее).

На практике так и происходит. Во время фото или видео съёмки недоэкспонированные (недостаточно света) объекты в кадре становятся чёрным пятном, а переэкспонированные (переизбыток света) - белым.

Аналогичная ситуация касается и терминов "насыщенность" и "интенсивность" цвета, когда в некоторых источниках говорится, что "насыщенность цвета - это интенсивность …. и т.д. и т.п". На самом деле это абсолютно разные характеристики. Насыщенность - "глубина" цвета, выраженная в степени отличия хроматического цвета от одинакового с ним по светлоте серого цвета. При уменьшении насыщенности каждый хроматический цвет приближается к серому.

Интенсивность - преобладание какого-либо тона по сравнению с другими (в пейзаже осеннего леса оранжевый тон будет преобладающим).

Такая "подмена" понятий происходит, скорее всего, по одной причине: грань между яркостью и светлостью, насыщенностью и интенсивностью цвета настолько тонкая, насколько субъективно само понятие цвет.

Из определений основных характеристик цвета можно выделить следующую закономерность: на цветопередачу (и соответственно на цветовосприятие) хроматических цветов большое влияние оказывают ахроматические цвета. Они не только помогают формировать оттенки, но и делают цвет светлым или темным, насыщенным или блеклым.

Как эти знания могут помочь фотографу или видеографу? Ну во-первых, никакой фотоаппарат или видеокамера не способны передать цвет так, как его воспринимает человек. И чтобы в дальнейшем при пост-обработке фото или видео материала достичь гармонии в изображении или приблизить изображение к реальности, необходимо умело манипулировать яркостью, светлостью и насыщенностью цвета, чтобы результат удовлетворил или Вас, как художника, или окружающих, как зрителей. Не зря в кинопроизводстве существует профессия колорист (в фотографии эту функцию обычно выполняет сам фотограф). Человек, обладающий знаниями о цвете, путём цветокоррекции доводит снятый и смонтированный материал до такого состояния, когда цветовое решение фильма просто заставляет зрителя изумляться и восхищаться одновременно. Во-вторых, в колористике все эти особенности цвета переплетаются довольно тонко и в различной последовательности, позволяя не только расширить возможности цветопередачи, но и добиться каких-то индивидуальных результатов. Если же этими инструментами пользоваться безграмотно, сложно будет найти поклонников своего творчества.

И на этой позитивной ноте мы наконец-то подошли к колористике.

Колористика, как наука о цвете, в своих законах опирается именно на спектр видимого излучения, который трудами исследователей 17-20 вв. из линейного представления (иллюстрация выше) был трансформирован в форму хроматического круга.

Что нам позволяет понять хроматический круг?

1. Основных (базовых, первичных, чистых) цветов всего 3:

Красный

Жёлтый

Синий

2. Составных цветов второго порядка (вторичных) тоже 3:

Зелёный

Оранжевый

Фиолетовый

Мало того, что в хроматическом круге они расположены напротив основных цветов, но и получаются они путём смешивания основных цветов друг с другом (зелёный = синий + жёлтый, оранжевый = жёлтый + красный, фиолетовый = красный + синий).

3. Составных цветов третьего порядка (третичных) 6:

Жёлто-оранжевый

Красно-оранжевый

Красно-фиолетовый

Сине-фиолетовый

Сине-зелёный

Жёлто-зелёный

Составные цвета третьего порядка получаются путём смешивания основных с составными цветами второго порядка.

Именно месторасположение цвета в двенадцатичастном цветовом круге позволяет понять, какие цвета и как могут сочетаться друг с другом.

ПРОДОЛЖЕНИЕ -

Лекция №7. Цвет. Восприятие цвета

С давних времен теоретики цвета развивали свои идеи и понимание взаимодействия цвета. Первые попытки по систематизации взглядов были предприняты еще при жизни Аристотеля (384-322 до н.э.), однако наиболее серьезные изыскания в теории цвета начались при Леонардо да Винчи (1452-1519 гг.). Леонардо обратил внимание, что определенные цвета усиливают друг друга и открыл контрастные (противоположные) и дополнительные цвета.

Первый цветовой круг был изобретен Исааком Ньютоном (1642-1727 гг.). Он разделил луч белого света на лучи красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового, а затем соединил концы спектра в цветовой круг. Он заметил, что при смешивании двух цветов из противоположных позиций получается нейтральный цвет.

Томас Янг (1773-1829) доказал, что в действительности белый световой луч разлагается лишь на три спектральных цвета: красный, зеленый и синий. Эти три цвета являются первоначальными. Основываясь на его работах, немецкий физиолог Герман Гельмгольц (1821-1894) показал, что человеческий глаз воспринимает цвет как сочетание красных, зеленых и синих световых волн. Эта теория доказала, что наш мозг «разбивает» цвет каждого предмета на различные процентные содержания в нем красного, зеленого и синего, и именно из-за этого мы воспринимаем различные цвета по-разному.

Иоганн Вольфганг Гете (1749-1832 гг.) разделил цвета на две группы. Он включил теплые цвета (красный-оранжевый-желтый) в положительную группу, а холодные цвета (зеленый-синий-фиолетовый) – в отрицательную. Он обнаружил, что цвета положительной группы вызывают у зрителей душевный подъем, а цвета отрицательной группы ассоциируются с чувством неустроенности.

Вильгельм Оствальд (1853-1932 гг.), российско-германский химик, в своей книге «Азбука цвета» (1916 г.) разработал систему цвета в зависимости от психологической гармонии и порядка.

Иттен Йоганс (1888-1967 гг.), теоретик цвета из Швейцарии, разработал цветовые гаммы и модифицировал цветовой круг, который базировался на трех основных цветах – красном, желтом и синем, и включал двенадцать оттенков. В своих экспериментах исследовал связь между цветом и визуальными эффектами.

В 1936 году американский художник Альберт Манселл (1858-1918) создал новую универсальную цветовую модель. Она получила название «Дерево Манселла», где оттенки располагаются вдоль ветвей различной длины в порядке их насыщенности. Труд Манселла был принят в американской промышленности за стандарт для наименования цветов.

Цветовая гармония

Удачное сочетание цветов может быть обозначено как «цветовая гармония». Независимо от того, состоят они из схожих цветов, которые дают более мягкое восприятие глазом, или из контрастных цветов, приковывающих к себе внимание, гармоничные цветовые сочетания являются делом личного вкуса. Практика искусства и дизайна выдвигает теории цвета, принципы использования цвета, которые позволяют принять решение относительно выбора того или иного цвета.

Цвет вызывает эмоциональный и физический отклик, однако природа отклика может быть изменена с помощью размещения исходного цвета в сочетании с одним или несколькими цветами. Можно варьировать цветовые комбинации, чтобы создавать сочетания, которые родственны или контрастны, и таким образом воздействовать на зрительские впечатления.

Базовые концепции

    Комплиментарные цвета (дополнительные)

Цвета расположены напротив друг друга в цветовом круге. Они дают наиболее контрастное сочетание. Использование двух противоположных цветов приведет к визуальной вибрации и возбуждению взгляда.

    Близкие цвета + комплиментарный (контрастные)

Один цвет сопровождается двумя цветами, расположенными в ближайшем соседстве от цвета, находящегося напротив главного. Смягчение контрастности приводит к возникновению замысловатого цветосочетания.

    Сдвоенные комплиментарные цвета

Представляют собой комбинацию двух пар комплиментарных цветов. Так как цвета, участвующие в таком сочетании, усиливают явную интенсивность каждого из них, то некоторые пары могут быть неприятны глазу. При использовании 4 цветов избегайте цветовых пятен одинаковой площади.

    Близкие цвета

Это комбинации двух и более цветов, находящихся в непосредственном соседстве на цветовом круге. Они обладают схожей длиной волны, что делает их легкими для восприятия.

    Триадные цвета

Это комбинация трех любых цветов, равномерно расположенных на цветовом круге. Триады первичных цветов воспринимаются более резко, вторичные и третичные триады дают более мягкий контраст.

    Монохроматические цвета

Это цветовые схемы, составленные из оттенков одного цвета. Используйте один цвет, исследуйте разнообразие насыщенности и прозрачности.

Группы цветов

Хроматические цвета - это цвета и их оттенки, которые мы различаем в спектре. Они отличаются друг от друга по трем признакам: цветовой тон, насыщенность, и яркость.

Насыщенность – это интенсивность цвета. Так, красный является более насыщенным по сравнению с красновато-коричневым. Из существующих в природе цветов наиболее насыщенными являются спектральные.

Яркими называют цвета, отличающиеся весьма большой насыщенностью и достаточной светлотой. Яркие цвета входят в группу полноцветных.

Светлыми называют цвета с малой насыщенностью и большой яркостью.

Наибольший процент света отражают белые поверхности, отсюда белый и близкие к нему цвета являются самыми светлыми и самыми яркими.

Ахроматические цвета отличаются один от другого только степенью яркости. Между самыми яркими (белыми) и самыми темными (черными) существует множество оттенков серого цвета.

Ахроматические цвета характеризуются яркостью или светлотой, которая дается количеством световой энергии, пропускаемой или излучаемой предметами.

Качества цвета

Собственные качества цвета, это те качества, которые ему объективно присущи (цвет, тон, светлота, насыщенность). От насыщенности зависит степень восприятия объекта, рельефность, объем и эмоциональный настрой композиции.

Цветовой тон – признак цвета, определенный его доминирующей длиной волны и положением в видимом спектре, который отличает его от других цветов.

Насыщенность – относительная чистота или сила оттенка, или его свободы от белого, черного или серого. Это синоним интенсивности и сатурации.

Различная насыщенность

Цветовой тон и насыщенность - качественные характеристики цвета, а количественную его сторону характеризует светлота (напряженность) цвета. Малейшее изменение одной из трех величин влечет за собой изменение цвета.

Различная яркость

Хроматические цвета, которые в оптическом смешении дают ахроматический цвет, называются взаимодополнительными .

Несобственные качества цветам объективно не присущи, а возникают вследствие эмоциональной реакции при их восприятии. Мы говорим, что цвета бывают теплые и холодные, легкие и тяжелые, глухие и звонкие, выступающие и отступающие, мягкие и жесткие.

К теплым относятся красный, желтый, оранжевый и все другие цвета, которые можно получить от смешения этих цветов.

Холодными считаются синий, голубой, фиолетовый и сине-зеленый цвета. Чем больше в зеленом или фиолетовом цвете желтого или красного тонов, тем теплее такой цвет, но при добавлении к ним синего цвета они становятся холодными.

К тяжелым относятся темные цвета: черный, синий, фиолетовый и все затемненные черной краской тона.

К легким – белый, красный, желтый цвет и все цвета, разбеленные белой краской.

Создать впечатление глубины за счет верного распределения цветов в пространстве, легкие - прозрачные, холодные (небо, даль); тяжелые - темные, малонасыщенные, плотные (коричневый, черный, фиолетовый ассоциируются с землей).

Контраст

Контраст - это ярко выраженная противоположность. Одновременный световой контраст возникает при наличии между двумя цветами тональной разницы. Когда эти цвета существуют в паре, они повышают яркость друг друга.

Одновременный световой

Суть одновременного светового контраста (ахроматического) заключается в том, что светлое пятно на темном фоне кажется светлее, чем оно есть на самом деле, а темное на светлом - темнее. Пятно называется реагирующим полем, а фон - индуктирующим. Световой контраст зависит от размера площади реагирующего поля: чем оно меньше, тем кажется темнее, чем больше - тем светлее. То есть одновременный световой контраст зависит от конфигурации реагирующего поля. Изменение линейных размеров при одновременном световом контрасте называется иррадацией.

Световой контраст

Одновременный цветовой

Этот вид контраста связан с таким признаком цвета как тон. Существует тенденция цветов в контрасте отдаляться друг от друга по цветовому кругу (например, желтый на оранжевом фоне будет более бледным, чуть зеленоватым, а оранжевый на желтом будет иметь чуть красноватый оттенок).

При сопоставлении взаимодополнительных цветов в восприятии не возникает новых оттенков, а происходит лишь взаимное повышение насыщенности и светлоты, но при удалении они тускнеют и превращаются в серое пятно.

Сопоставление контрастов взаимодополнительных цветов

а) при сопоставлении холодных цветов контраст сильнее, чем при сопоставлении теплых;

б) слабое освещение повышает контраст, сильное - уничтожает;

в) при сопоставлении менее насыщенных цветов (светлых или темных) контраст больше, чем при сопоставлении более насыщенных.

Контраст цветов различной насыщенности

Цветовой контраст по насыщенности особенно заметен при сопоставлении ахроматических цветов с хроматическими. На черном фоне любой цвет понижает свою насыщенность, а на белом или светло-сером - повышает. Этот эффект используют, когда нужно усилить чистоту того или иного цвета.

Изменение насыщенности на фоне ахроматических цветов

Пограничный цветовой

На границе смежных (рядом стоящих) цветовых тонов при условии, что площадь регулирующего поля достаточно велика по отношению к индуктирующему, возникает пограничный контраст (желтый на границе с красным кажется зеленоватым, а в отдалении от него этот эффект ослабевает).

При наличии белой или черной полосы между цветами пограничный контраст исчезает.

Пограничный цветовой контраст

Пограничный контраст хроматических цветов (пограничный световой контраст) связан с тональными отношениями. Часть светлого, находящаяся ближе к темному, будет светлее, чем более отдаленная часть. Этот эффект создает впечатление неровности, возникает пространственная вибрация и эффект объемности. Если это впечатление нежелательно и нужно погасить действие пограничного контраста, то делается подравнивание светлот, т.е. на стыке двух цветов - темный высветляется либо затемняется светлый.

Пограничный контраст ахроматических цветов

Последовательный цветовой

Этот вид контраста возникает, когда мы переводим взгляд с одного цветового тона на другой.

При этом на последнем наблюдается оттенок не свойственный ему, это будет цвет дополнительный тому, что мы видели прежде (если перевести взгляд с ярко-красного предмета на серую поверхность, возникает зеленоватый оттенок). Малонасыщенные цвета такого контраста не вызывают.

Последовательный цветовой контраст

Статьи по теме: