От чего зависит внутренняя энергия термодинамики. Термодинамика

Мы знаем, что внутреннюю энергию тела можно изменить двумя способами - путем совершения работы и путем теплообмена. При осуществлении первого из этих способов внутренняя энергия тела изменяется на величину совершенной работы А, а при осуществлении второго из них - на величину, равную количеству переданной теплоты Q.

Обозначим начальную внутреннюю энергию тела через U 1 , а конечную (после того, как ее изменили) - через U 2 . Тогда изменение внутренней энергии тела будет равно разности U 2 -U 1 . Изменение любой физической величины в физике принято обозначать греческой буквой А (дельта) Поэтому мы можем записать:

ΔU - изменение внутренней энергии
U = U 2 – U 1

Изменение внутренней энергии может выражаться как положительной, так и отрицательной величиной:
1) если внутренняя энергия тела увеличивается, то U 2 > U 1 и, следовательно, ΔU > 0;
2) если внутренняя энергия тела уменьшается, то U 2 < U 1 и, следовательно, ΔU < 0.

В зависимости от того, каким путем (путем совершения над телом работы или путем теплообмена) изменялась внутренняя энергия тела, ее изменение можно рассчитывать двумя способами:

ΔU = A - при совершении работы (33.1)
ΔU = Q - при теплообмене (33.2)

Применяя уравнение (33.1), следует помнить, что в его правой части фигурирует работа внешних сил, действующих на тело. Работа самого тела A тела отличается от нее знаком:

A тела = –A

Количество теплоты Q также может быть как положительным, так и отрицательным:
1) если внутренняя энергия тела увеличивается в процессе теплообмена, то Q>О (тело получает количество теплоты);
2) если внутренняя энергия тела уменьшается в процессе теплообмена, то Q<0 (тело отдает количество теплоты).

В общем случае внутренняя энергия тела (или системы тел) может изменяться сразу двумя способами - и путем совершения работы, и путем теплообмена. Тогда для расчета изменения внутренней энергии применяют уравнение

ΔU = A + Q (33.3)

Согласно этому уравнению, изменение внутренней энергии системы равно сумме работы внешних сил и количества теплоты, полученного системой.

1. Как обозначаются внутренняя энергия тела и изменение внутренней энергии тела? 2. В каком случае изменение внутренней энергии тела положительно и в каком отрицательно? 3. Какой знак имеет: а) количество теплоты, полученное телом; б) количество теплоты, отданное телом? Почему? 4. Напишите формулу, по которой рассчитывается изменение внутренней энергии тела при теплообмене. 5. Напишите формулу, по которой рассчитывается изменение внутренней энергии тела при совершении над ним работы. 6. По какой формуле рассчитывается изменение внутренней энергии в общем случае?

ПОДЕЛИЛИСЬ

Как вы думаете, от чего зависит активность человека? Почему кто-то с лёгкостью просыпается и летит на работу, а другому едва удаётся доползти от постели к кухне за кофе? Хотите узнать, как изменить свою жизнь, чтобы всегда быть заряженным и всё успевать?

В этой статье мы разберём основные свойства внутренней энергии человека и то, почему важно делать энергетические упражнения.

Природа Вселенной и внутренней энергии человека

В разных культурах внутреннюю энергию называли по-разному: Ци, Вриль, Прана, Оргон, Жива, витальность, мана. Все эти понятия означают примерно одно и то же.

Теперь к разным религиозным и эзотерическим направлениям присоединилась наука. Квантовые физики заявляют, что Вселенная состоит из волн и частиц энергии. Более того, мы можем научиться управлять энергетической реальностью с помощью своих мыслей.

Вы уже наверное слышали о таких вещах как Секрет, Трансфёрфинг реальности, созидательная визуализация. Все эти системы работают. Но то, насколько сильно влияют ваши мысли и намерение на реальность, зависит от того, насколько мощной энергетикой вы обладаете и насколько хорошо вы её используете.

В любом случае мощности ваших мыслей достаточно, чтобы зажечь лампочку на 25 Ватт

Энергию Вселенной можно воспринимать в двух формах - как вещество или как волну. Простые аналогии - электричество и вай-фай.

Сегодня мы сделаем акцент на энергию как вещество. Но если вы хотите узнать больше о её волновых свойствах, . Он по полочкам разбирает оба типа энергии и показывает, в чём разница в работе с ними.

Пятый элемент или энергия как вещество

Восприятие энергии как вещества естественнее для человека. С рождения мы изучаем мир нашими органами чувств. Пробуем на вкус, прикасаемся ладошкой, слушаем, смотрим и созерцаем.

Поэтому человек в некотором смысле ограничен. Наша цивилизация развивалась как цивилизация материальных воплощений, в то время как более тонкие слои мира остались неосознанны.

Тем не менее, о внутренней энергии говорят даже Платон и Аристотель. Кроме классических стихий Воды, Огня, Земли, Воздуха, они выделяли пятый элемент - эфир или квинтэссенция. Античные философы напрямую связывали энергию 5-ти стихий с 5-тью тонкими телами - разум, чувства, плоть, материя и эфир.

Модель 5-ти стихий ложится и на структуру Таро - 4 масти и Старшие Арканы

Греки выделяли квинтэссенцию в молнии. Сейчас у нас есть ещё более подходящая аналогия - электричество.

Его нельзя увидеть, но мы знаем, что оно есть. Оно заставляет работать наши приборы. Мы можем управлять им, включать и выключать. Но что будет, если не управлять электричеством? Одним приборам будет его недостаточно, а другие будут гореть из-за слишком большого напряжения.

Внутренняя энергия человека во многом играет роль электричества для нашего тела и разума. Поэтому нельзя отпускать её состояние на самотёк.

Зачем заниматься энергетическими практиками

Внутренняя энергия есть у каждого живого существа. Она расходуется на каждое наше действие, эмоцию и даже мысль.

От количества вашей энергии зависит всё. Физическое самочувствие, иммунитет, здоровье. Настроение и жизненная активность, будете ли вы добавиться своих целей или скорее жаловаться на внешние обстоятельства. А также то, как вас воспринимают другие. Люди с мощной энергией привлекательны и уверенны, к ним невольно проникаешься симпатией.

Когда ваша энергетика здорова, Вселенная принимает вас, вы понимаете своё место в жизни и наслаждаетесь им

В общем, внутренняя энергия - своего рода топливо для вашей жизни, от качества которого зависит, насколько быстро вы двигаетесь и насколько далеко доедите. Чем более осознанно вы относитесь к жизни и своим действиям, тем больше энергии вы экономите и накапливаете.

В итоге ваше энергетическое состояние растёт по наклонной и начинает вызывать видимые изменения в жизни, вплоть до открытия новых талантов и мистических способностей.

Но сперва вам нужно научиться ощущать свою энергию.

Когда вы начнёте чувствовать её течение сквозь ваше тело, тогда вы научитесь ей управлять. А после этого сможете приступить к более серьёзным практикам, которые способны вызвать ощутимые изменения в ваших мыслях, теле и жизни.

Сложно ли обучиться энергетическим практикам и добиться видимых результатов

Раньше этому обучали только в закрытых сообществах. Монахи десятилетиями учились управлять своей энергией.

Сейчас всё проще. Во-первых, мы живём во время перехода из Старого Эона в Новый. Сама Вселенная подталкивает нас и помогает нам развиваться. Во-вторых, сейчас найти описание энергетической практики или медитации очень просто.

Проверенные приёмы для работы с внутренней энергией можно получить на .

Любое макроскопическое тело имеет энер-гию , обусловленную его микросостоянием. Эта энергия называется внутренней (обо-значается U ). Она равняется энергии дви-жения и взаимодействия микрочастиц, из которых состоит тело. Так, внутренняя энер-гия идеального газа состоит из кинетической энергии всех его молекул, поскольку их вза-имодействием в данном случае можно пре-небречь. Поэтому его внутренняя энергия за-висит лишь от температуры газа (U ~ T ).

Модель идеального газа пре-дусматривает, что молекулы на-ходятся на расстоянии несколь-ких диаметров друг от друга. Поэтому энергия их взаимо-действия намного меньше энер-гии движения и ее можно не учитывать.

У реальных газов, жидкостей и твердых тел взаимодействием микрочастиц (атомов, молекул, ионов и т. п.) пренебречь нельзя, поскольку оно существенно влияет на их свойства. Поэтому их внутренняя энергия состоит из кинетической энергии теплового движения микрочастиц и потенциальной энергии их взаимодействия. Их внутренняя энергия, кроме температуры T, будет за-висеть также от объема V, поскольку изме-нение объема влияет на расстояние между атомами и молекулами, а, следовательно, и на потенциальную энергию их взаимодей-ствия между собой.

Внутренняя энергия — это функция состояния тела, которая опреде-ляется его температурой T и объемом V.

Внутренняя энергия однознач-но определяется температурой T и объемом тела V, характе-ризующими его состояние: U = U(T, V)

Чтобы изменить внутреннюю энергию те-ла, нужно фактически изменить или кинетическую энергию теплового движения мик-рочастиц, или потенциальную энергию их взаимодействия (или и ту и другую вместе). Как известно, это можно сделать двумя способами — путем теплообмена или вслед-ствие выполнения работы. В первом случае это происходит за счет передачи опреде-ленного количества теплоты Q; во втором — вследствие выполнения работы A.

Таким образом, количество теплоты и выполненная работа являются мерой изме-нения внутренней энергии тела :

Δ U = Q + A.

Изменение внутренней энер-гии происходит за счет отдан-ного или полученного телом не-которого количества теплоты или вследствие выполнения ра-боты.

Если имеет место лишь теплообмен, то изменение внутренней энергии происходит путем получения или отдачи определенного количества теплоты: Δ U = Q. При нагрева-нии или охлаждении тела оно равно:

Δ U = Q = cm(T 2 — Т 1) = cm ΔT.

При плавлении или кристаллизации твер-дых тел внутренняя энергия изменяется за счет изменения потенциальной энергии вза-имодействия микрочастиц, ведь происходят структурные изменения строения вещества. В данном случае изменение внутренней энер-гии равняется теплоте плавления (кристал-лизации) тела: ΔU — Q пл = λ m, где λ — удель-ная теплота плавления (кристаллизации) твер-дого тела.

Испарение жидкостей или конденсация пара также вызывает изменение внутренней энергии , которая равна теплоте парообра-зования: Δ U = Q п = rm, где r — удельная теп-лота парообразования (конденсации) жидко-сти.

Изменение внутренней энергии тела вслед-ствие выполнения механической работы (без теплообмена) численно равно значению этой работы: Δ U = A.

Если изменение внутренней энергии происходит вследст-вие теплообмена, то Δ U = Q = cm(T 2 — T 1), или Δ U = Q пл = λ m, или Δ U = Q п = rm.

Следовательно, с точки зрения моле-кулярной физики: Материал с сайта

Внутренняя энергия тела является суммой кинетической энергии теп-лового движения атомов, молекул или других частиц, из которых оно состоит, и потен-циальной энергии взаимодействия между ни-ми; с термодинамической точки зрения она является функцией состояния тела (системы тел), которая однозначно определяется его макропараметрами — температурой T и объе-мом V.

Таким образом, внутренняя энергия — это энергия системы, которая зависит от ее внутреннего состояния. Она состоит из энергии теплового движения всех микро-частиц системы (молекул, атомов, ионов, электронов и т. п.) и энергии их взаи-модействия. Полное значение внутренней энергии определить практически невоз-можно, поэтому вычисляют изменение внут-ренней энергии Δ U, которое происходит вследствие теплопередачи и выполнения ра-боты.

Внутренняя энергия тела равна сумме кинетической энергии теплового движения и потен-циальной энергии взаимодей-ствия составляющих его мик-рочастиц.

На этой странице материал по темам:

  • Какие макропараметры определяют энергию внутренюю энергию тела

  • Каким образом можно изменить внутреннюю энергию тела ответ

  • Определения теплового движения и внутренней энергии

  • Вы видите взлетающую ракету. Она совершает работу – поднимает космонавтов и груз. Кинетическая энергия ракеты возрастает, так как по мере подъёма ракета приобретает всё большую скорость. Потенциальная энергия ракеты также возрастает, так как она всё выше поднимается над Землёй. Следовательно, сумма этих энергий, то есть механическая энергия ракеты, тоже увеличивается.

    Мы помним, что при совершении телом работы его энергия уменьшается. Однако ракета совершает работу, но её энергия не уменьшается, а увеличивается! В чём же разгадка противоречия? Оказывается, что кроме механической энергии существует ещё один вид энергии – внутренняя энергия. Именно за счёт уменьшения внутренней энергии сгорающего топлива ракета совершает механическую работу и, кроме того, увеличивает свою механическую энергию.

    Не только горючие , но и горячие тела обладают внутренней энергией, которую легко превратить в механическую работу. Проделаем опыт. Нагреем в кипятке гирю и поставим на жестяную коробочку, присоединённую к манометру. По мере того как воздух в коробочке будет прогреваться, жидкость в манометре начнёт двигаться (см. рисунок).

    Расширяющийся воздух совершает над жидкостью работу. За счёт какой энергии это происходит? Разумеется, за счёт внутренней энергии гири. Следовательно, в этом опыте мы наблюдаем превращение внутренней энергии тела в механическую работу. Заметим, что механическая энергия гири в этом опыте не меняется – она всё время равна нулю.

    Итак, внутренняя энергия – это такая энергия тела, за счёт которой может совершаться механическая работа, при этом не вызывая убыли механической энергии этого тела.

    Внутренняя энергия любого тела зависит от множества причин: рода и состояния его вещества, массы и температуры тела и других. Внутренней энергией обладают все тела: большие и маленькие, горячие и холодные, твёрдые, жидкие и газообразные.

    Наиболее легко на нужды человека может быть использована внутренняя энергия лишь, образно говоря, горячих и горючих веществ и тел. Это нефть, газ, уголь, геотермальные источники вблизи вулканов и так далее. Кроме того, в XX веке человек научился использовать и внутреннюю энергию так называемых радиоактивных веществ. Это, например, уран, плутоний и другие.

    Взгляните на правую часть схемы. В популярной литературе нередко упоминаются тепловая, химическая, электрическая, атомная (ядерная) и другие виды энергии. Все они, как правило, являются разновидностями внутренней энергии, так как за счёт них может совершаться механическая работа, не вызывая при этом убыли механической энергии. Понятие внутренней энергии мы рассмотрим более подробно при дальнейшем изучении физики.

    Термодинамика как дисциплина сформировалась к середине 19-го столетия. Это произошло после открытия закона о сохранении энергии. Существует определенная связь между термодинамикой и молекулярной кинетикой. Какое место в теории занимает внутренняя энергия? Рассмотрим это в статье.

    Статистическая механика и термодинамика

    Исходной научной теорией о тепловых процессах стала не молекулярно-кинетическая. Первой была термодинамика. Она сформировалась в процессе изучения оптимальных условий применения теплоты для осуществления работы. Это случилось в середине 19-го столетия, до того как молекулярная кинетика получила признание. На сегодняшний день в технике и науке применяется как термодинамика, так и молекулярно-кинетическая теория. Последняя в теоретической физике именуется статистической механикой. Она наряду с термодинамикой исследует с применением различных методов одинаковые явления. Эти две теории взаимно дополняют друг друга. Основа термодинамики составлена двумя ее законами. Оба они касаются поведения энергии и установлены опытным путем. Законы эти справедливы для любого вещества вне зависимости от внутреннего строения. Более глубокой и точной наукой считается статистическая механика. По сравнению с термодинамикой она представляет большую сложность. Ее применяют в том случае, когда термодинамические соотношения оказываются недостаточными для объяснения исследуемых явлений.

    Молекулярно-кинетическая теория

    К середине 19-го века было доказано, что наряду с механической существует и внутренняя энергия макроскопических тел. Она входит в баланс энергетических природных превращений. После того как была открыта внутренняя энергия, было сформулировано положение о ее сохранении и превращении. В то время как шайба, скользящая по льду, останавливается под воздействием силы трения, ее кинетическая (механическая) энергия не просто перестает существовать, но и передается молекулам шайбы и льда. При движении неровности поверхностей тел, подвергающихся трению, деформируются. При этом интенсивность движущихся беспорядочно молекул возрастает. При нагревании обоих тел возрастает внутренняя энергия. Нетрудно пронаблюдать и обратный переход. При нагревании воды в закрытой пробирке внутренняя энергия (и ее, и образующегося пара) начинает возрастать. Давление увеличится, в результате чего пробка будет вытеснена. Внутренняя энергия пара станет причиной увеличения кинетической энергии. В процессе расширения пар совершает работу. При этом его внутренняя энергия уменьшается. В итоге происходит охлаждение пара.

    Внутренняя энергия. Общая информация

    При беспорядочном движении всех молекул сумма их кинетических энергий, а также потенциальных энергий их взаимодействий составляет внутреннюю энергию. Учитывая положение молекул относительно друг друга и их движение, вычислить эту сумму практически невозможно. Это обусловлено огромным количеством элементов в макроскопических телах. В связи с этим необходимо уметь вычислять значение в соответствии с макроскопическими параметрами, которые можно измерить.

    Одноатомный газ

    Вещество считается достаточно простым по своим свойствам, поскольку состоит из отдельных атомов, а не молекул. К одноатомным газам относят аргон, гелий, неон. Потенциальная энергия в данном случае равна нулю. Это обусловлено тем, что молекулы в идеальном газе друг с другом не взаимодействуют. Кинетическая энергия беспорядочного молекулярного движения является определяющей для внутренней (U). Для того чтобы вычислить U одноатомного газа массой m, нам необходимо произвести умножение кинетической энергии (средней) 1-го атома на общее число всех атомов. Но при этом нужно учитывать, что kNA=R. Исходя из имеющихся у нас данных, мы получаем следующую формулу: U= 2/3 х m/M х RT, где внутренняя энергия прямо пропорциональна абсолютной температуре. Все изменения U определяются только T (температурой), замеренной в изначальном и итоговом состоянии газа, и не имеют прямого отношения к объему. Это связано с тем, что взаимодействия его потенциальной энергии равны 0, и уж вовсе не зависят от других системных параметров макроскопических объектов. При наличии более сложных молекул идеальный газ также будет иметь внутреннюю энергию, прямо пропорциональную абсолютной температуре. Но, надо сказать, при этом между U и T коэффициент пропорциональности изменится. Ведь сложные молекулы выполняют не только поступательные движения, но и вращательные. Внутренняя энергия равна сумме этих движений молекул.

    От чего зависит U?

    Внутренняя энергия находится под влиянием одного из макроскопических параметров. Это температура. У реальных газов, жидких и твердых тел потенциальная энергия (средняя) при взаимодействии молекул не равняется нулю. Хотя, если рассмотреть точнее, для газов она много меньше кинетической (средней же). При этом для твердых и жидких тел - сравнима с ней. А вот средняя U зависит от V вещества, потому что в период его изменения меняется и среднее расстояние, которое есть между молекулами. Из этого следует, что в термодинамике внутренняя энергия зависит не только от температуры T, но и от V (объема). Их значение однозначно определяет состояние тел, а значит и U.

    Мировой океан

    Сложно представить, какие невероятно большие запасы энергии содержит в себе Мировой океан. Рассмотрим, что собой представляет внутренняя энергия воды. Надо отметить, что она же является тепловой, потому что образовалась в результате перегрева жидкой части поверхности океана. Так вот, имея разницу, к примеру, в 20 градусов по отношению к донной воде, она приобретает значение около 10^26 Дж. При измерении течений в океане его кинетическая энергия оценивается величиной около 10^18 Дж.

    Глобальные проблемы

    Существуют глобальные проблемы, которые можно поставить на мировой уровень. К ним относят:

    Истощение запасов ископаемого топлива (в первую очередь нефти и газа);

    Значительное загрязнение окружающей среды, связанное с использованием этих ископаемых;

    Тепловое "загрязнение", плюс ко всему повышение концентрации атмосферной углекислоты, грозящее глобальными климатическими нарушениями;

    Использование урановых запасов, приводящих к появлению радиоактивных отходов, которые весьма негативно сказываются на жизнедеятельности всего живого;

    Использование термоядерной энергии.

    Заключение

    Вся эта неопределенность касательно ожидания последствий, которые непременно настанут, если не перестать потреблять энергию, добытую такими способами, заставляет ученых и инженеров уделять практически все свое внимание решению этой проблемы. Их главной задачей является поиск оптимального источника энергии, Немаловажно и задействование различных природных процессов. Среди них наибольший интерес представляют: солнце, вернее солнечное тепло, ветер и энергия в Мировом океане.

    Во многих странах моря и океаны давно рассматривают как источник энергии, и их перспективы становятся все более многообещающими. Океан таит в себе немало тайн, его внутренняя энергия - это бездонный кладезь возможностей. Одно только то, сколько способов извлечения энергии он нам предоставляет (таких как океанские течения, энергия приливов и отливов, термальная энергия и другие), уже заставляет задуматься о его величии.

Статьи по теме: