Организм получает необходимую для жизнедеятельности энергию при. Энергетические процессы в организме

Из клеток состоят все живые организмы, кроме вирусов. Они обеспечивают все необходимые для жизни растения или животного процессы. Клетка и сама может быть отдельным организмом. И разве может такая сложная структура жить без энергии? Конечно, нет. Так как же происходит обеспечение клеток энергией? Оно базируется на процессах, которые мы рассмотрим ниже.

Обеспечение клеток энергией: как это происходит?

Немногие клетки получают энергию извне, они вырабатывают ее сами. обладают своеобразными "станциями". И источником энергии в клетке является митохондрия — органоид, который ее вырабатывает. В нем происходит процесс клеточного дыхания. За счет него и происходит обеспечение клеток энергией. Однако присутствуют они только у растений, животных и грибов. В клетках бактерий митохондрии отсутствуют. Поэтому у них обеспечение клеток энергией происходит в основном за счет процессов брожения, а не дыхания.

Строение митохондрии

Это двумембранный органоид, который появился в эукариотической клетке в процессе эволюции в результате поглощения ею более мелкой Этим можно объяснить то, что в митохондриях присутствует собственная ДНК и РНК, а также митохондриальные рибосомы, вырабатывающие нужные органоидам белки.

Внутренняя мембрана обладает выростами, которые называются кристы, или гребни. На кристах и происходит процесс клеточного дыхания.

То, что находится внутри двух мембран, называется матрикс. В нем расположены белки, ферменты, необходимые для ускорения химических реакций, а также молекулы РНК, ДНК и рибосомы.

Клеточное дыхание — основа жизни

Оно проходит в три этапа. Давайте рассмотрим каждый из них более подробно.

Первый этап — подготовительный

Во время этой стадии сложные органические соединения расщепляются на более простые. Так, белки распадаются до аминокислот, жиры — до карбоновых кислот и глицерина, нуклеиновые кислоты — до нуклеотидов, а углеводы — до глюкозы.

Гликолиз

Это бескислородный этап. Он заключается в том, что вещества, полученные во время первого этапа, расщепляются далее. Главные источники энергии, которые использует клетка на данном этапе, — молекулы глюкозы. Каждая из них в процессе гликолиза распадается до двух молекул пирувата. Это происходит во время десяти последовательных химических реакций. Вследствие первых пяти глюкоза фосфорилируется, а затем расщепляется на две фосфотриозы. При следующих пяти реакциях образуется две молекулы и две молекулы ПВК (пировиноградной кислоты). Энергия клетки и запасается именно в виде АТФ.

Весь процесс гликолиза можно упрощенно изобразить таким образом:

2НАД+ 2АДФ + 2Н 3 РО 4 + С 6 Н 12 О 6 2Н 2 О + 2НАД. Н 2 +2С 3 Н 4 О 3 + 2АТФ

Таким образом, используя одну молекулу глюкозы, две молекулы АДФ и две фосфорной кислоты, клетка получает две молекулы АТФ (энергия) и две молекулы пировиноградной кислоты, которую она будет использовать на следующем этапе.

Третий этап — окисление

Данная стадия происходит только при наличии кислорода. Химические реакции этого этапа происходят в митохондриях. Именно это и есть основная часть во время которой высвобождается больше всего энергии. На этом этапе вступая в реакцию с кислородом, расщепляется до воды и углекислого газа. Кроме того, при этом образуется 36 молекул АТФ. Итак, можно сделать вывод, что главные источники энергии в клетке — глюкоза и пировиноградная кислота.

Суммируя все химические реакции и опуская подробности, можно выразить весь процесс клеточного дыхания одним упрощенным уравнением:

6О 2 + С 6 Н 12 О 6 + 38АДФ + 38Н 3 РО 4 6СО 2 + 6Н2О + 38АТФ.

Таким образом, в ходе дыхания из одной молекулы глюкозы, шести молекул кислорода, тридцати восьми молекул АДФ и такого же количества фосфорной кислоты клетка получает 38 молекул АТФ, в виде которой и запасается энергия.

Разнообразие ферментов митохондрий

Энергию для жизнедеятельности клетка получает за счет дыхания — окисления глюкозы, а затем пировиноградной кислоты. Все эти химические реакции не могли бы проходить без ферментов — биологических катализаторов. Давайте рассмотрим те из них, которые находятся в митохондриях — органоидах, отвечающих за клеточное дыхание. Все они называются оксидоредуктазами, потому что нужны для обеспечения протекания окислительно-восстановительных реакций.

Все оксидоредуктазы можно разделить на две группы:

  • оксидазы;
  • дегидрогеназы;

Дегидрогеназы, в свою очередь, делятся на аэробные и анаэробные. Аэробные содержат в своем составе кофермент рибофлавин, который организм получает из витамина В2. Аэробные дегидрогеназы содержат в качестве коферментов молекулы НАД и НАДФ.

Оксидазы более разнообразны. В первую очередь они делятся на две группы:

  • те, которые содержат медь;
  • те, в составе которых присутствует железо.

К первым относятся полифенолоксидазы, аскорбатоксидаза, ко вторым — каталаза, пероксидаза, цитохромы. Последние, в свою очередь, делятся на четыре группы:

  • цитохромы a;
  • цитохромы b;
  • цитохромы c;
  • цитохромы d.

Цитохромы а содержат в своем составе железоформилпорфирин, цитохромы b — железопротопорфирин, c — замещенный железомезопорфирин, d — железодигидропорфирин.

Возможны ли другие пути получения энергии?

Несмотря на то что большинство клеток получают ее в результате клеточного дыхания, существуют также анаэробные бактерии, для существования которых не нужен кислород. Они вырабатывают необходимую энергию путем брожения. Это процесс, в ходе которого с помощью ферментов углеводы расщепляются без участия кислорода, вследствие чего клетка и получает энергию. Различают несколько видов брожения в зависимости от конечного продукта химических реакций. Оно бывает молочнокислое, спиртовое, маслянокислое, ацетон-бутановое, лимоннокислое.

Для примера рассмотрим Его можно выразить вот таким уравнением:

С 6 Н 12 О 6 С 2 Н 5 ОН + 2СО 2

То есть одну молекулу глюкозы бактерия расщепляет до одной молекулы этилового спирта и двух молекул оксида (IV) карбона.

Для нормального функционирования, поддержания процессов жизнеобеспечения, выполнения определенных функций организму необходима энергия. Течение любого процесса: физического, химического или информационного, возможно только при эффективной работе систем энергообеспечения .

Глюкоза является основным, но не единственным субстратом для выработки энергии в клетке. Вместе с углеводами в наш организм с пищей поступают жиры, белки и другие вещества, которые после расщепления также могут служить источниками энергии, превращаясь в вещества, включающиеся в биохимические реакции, протекающие в клетке.

Фундаментальные исследования в области теории информации привели к появлению понятия информационной энергии (или энергии информационного воздействия), как разности между определенностью и неопределенностью. Здесь же хотелось бы отметить, что клетка потребляет и тратит информационную энергию на ликвидацию неопределенности в каждый момент своего жизненного цикла. Это приводит к реализации жизненного цикла без увеличения энтропии.

Нарушение процессов энергетического обмена под влиянием различных воздействий приводит к сбоям на отдельных стадиях и вследствие этих сбоев к нарушению подсистемы жизнедеятельности клетки и всего организма в целом. Если количество и распространенность этих нарушений превышают компенсаторные возможности гомеостатических механизмов в организме, то система выходит из под управления, клетки перестают работать синхронно. На уровне организма это проявляется в виде различных патологических состояний.

Так, недостаток витамина B 1 , участвующего в работе некоторых ферментов, приводит к блокированию окисления пировиноградной кислоты, избыток гормонов щитовидной железы нарушает синтез АТФ и т.д. Смертельные исходы при инфаркте миокарда, отравлении угарным газом или цианистым калием также связаны с блокированием процесса клеточного дыхания путем ингибирования или разобщения последовательных реакций. Через подобные механизмы опосредованно и действие многих бактериальных токсинов.

Таким образом, функционирование клетки, ткани, органа, системы органов или организма как системы поддерживается саморегуляторными механизмами, оптимальное течение которых, в свою очередь, обеспечивается биофизическими, биохимическими, энергетическими и информационными процессами.

Литература
  1. Биофизика: Учеб. для студ. высш. учеб. заведений. – М.: Гуманит. изд. центр ВЛАДОС, 1999. – 288 с.
  2. Винчестер А. Основы современной биологии / Пер. с англ. М.Д. Гроздовой. – М.: Мир, 1967. – 328 с., ил.
  3. Робертис Э. де, Новинский В., Саэс Ф. Биология клетки / Под ред. С.Я. Залкинда; Пер. с англ. А.В. Михеевой, В.И. Самойлова, И.В. Цоглиной, Ю.А. Шаронова. – М.: Мир, 1973. – 488 с.
  4. Стратанович Р.Л. Теория информации. – М.: Сов. радио, 1975. – 424 с.
  5. Физиология человека: Учебник / Под ред. В.М. Смирнова. – М.: Медицина, 2001. – 608 с., ил.
  6. Физический энциклопедический словарь / Гл. ред. А.М. Прохоров. – М.: Сов. энциклопедия, 1983. – 928 с., ил.
  7. Эткинс П. Порядок и беспорядок в природе: Пер. с англ; Предисл. Ю.Г. Рудного. – М.: Мир, 1987. – 224 с., ил.
  8. Юсупов Г.А. Энергоинформационная медицина. Гомеопатия. Электропунктура по Р.Фоллю. – М.: Издательский дом “Московские новости”, 2000 – 331 с., ил.

Обмен веществ (метаболизм) - это совокупность всех химических реакций, которые происходят в организме. Все эти реакции делятся на 2 группы


1. Пластический обмен (ассимиляция, анаболизм, биосинтез) - это когда из простых веществ с затратой энергии образуются (синтезируются) более сложные. Пример:

  • При фотосинтезе из углекислого газа и воды синтезируется глюкоза.

2. Энергетический обмен (диссимиляция, катаболизм, дыхание) - это когда сложные вещества распадаются (окисляются) до более простых, и при этом выделяется энергия , необходимая для жизнедеятельности. Пример:

  • В митохондриях глюкоза, аминокислоты и жирные кислоты окисляются кислородом до углекислого газа и воды, при этом образуется энергия (клеточное дыхание)

Взаимосвязь пластического и энергетического обмена

  • Пластический обмен обеспечивает клетку сложными органическими веществами (белками, жирами, углеводами, нуклеиновыми кислотами), в том числе белками-ферментами для энергетического обмена.
  • Энергетический обмен обеспечивает клетку энергией. При выполнении работы (умственной, мышечной и т.п.) энергетический обмен усиливается.

АТФ – универсальное энергетическое вещество клетки (универсальный аккумулятор энергии). Образуется в процессе энергетического обмена (окисления органических веществ).

  • При энергетическом обмене все вещества распадаются, а АТФ - синтезируется. При этом энергия химических связей распавшихся сложных веществ переходит в энергию АТФ, энергия запасается в АТФ .
  • При пластическом обмене все вещества синтезируются, а АТФ - распадается. При этом расходуется энергия АТФ (энергия АТФ переходит в энергию химических связей сложных веществ, запасается в этих веществах).

Выберите один, наиболее правильный вариант. В процессе пластического обмена
1) более сложные углеводы синтезируются из менее сложных
2) жиры превращаются в глицерин и жирные кислоты
3) белки окисляются с образованием углекислого газа, воды, азотсодержащих веществ
4) происходит освобождение энергии и синтез АТФ

Ответ


Выберите три варианта. Чем пластический обмен отличается от энергетического?
1) энергия запасается в молекулах АТФ
2) запасенная в молекулах АТФ энергия расходуется
3) органические вещества синтезируются
4) происходит расщепление органических веществ
5) конечные продукты обмена - углекислый газ и вода
6) в результате реакций обмена образуются белки

Ответ


Выберите один, наиболее правильный вариант. В процессе пластического обмена в клетках синтезируются молекулы
1) белков
2) воды
3) АТФ
4) неорганических веществ

Ответ


Выберите один, наиболее правильный вариант. В чем проявляется взаимосвязь пластического и энергетического обмена
1) пластический обмен поставляет органические вещества для энергетического
2) энергетический обмен поставляет кислород для пластического
3) пластический обмен поставляет минеральные вещества для энергетического
4) пластический обмен поставляет молекулы АТФ для энергетического

Ответ


Выберите один, наиболее правильный вариант. В процессе энергетического обмена, в отличие от пластического, происходит
1) расходование энергии, заключенной в молекулах АТФ
2) запасание энергии в макроэргических связях молекул АТФ
3) обеспечение клеток белками и липидами
4) обеспечение клеток углеводами и нуклеиновыми кислотами

Ответ


1. Установите соответствие между характеристикой обмена и его видом: 1) пластический, 2) энергетический. Запишите цифры 1 и 2 в правильном порядке.
А) окисление органических веществ
Б) образование полимеров из мономеров
В) расщепление АТФ
Г) запасание энергии в клетке
Д) репликация ДНК
Е) окислительное фосфорилирование

Ответ


2. Установите соответствие между характеристикой обмена веществ в клетке и его видом: 1) энергетический, 2) пластический. Запишите цифры 1 и 2 в порядке, соответствующим буквам.
А) происходит бескислородное расщепление глюкозы
Б) происходит на рибосомах, в хлоропластах
В) конечные продукты обмена – углекислый газ и вода
Г) органические вещества синтезируются
Д) используется энергия, заключенная в молекулах АТФ
Е) освобождается энергия и запасается в молекулах АТФ

Ответ


3. Установите соответствие между признаками обмена веществ у человека и его видами: 1) пластический обмен, 2) энергетический обмен. Запишите цифры 1 и 2 в правильном порядке.
А) вещества окисляются
Б) вещества синтезируются
В) энергия запасается в молекулах АТФ
Г) энергия расходуется
Д) в процессе участвуют рибосомы
Е) в процессе участвуют митохондрии

Ответ


4. Установите соответствие между характеристиками обмена веществ и его видом: 1) энергетический, 2) пластический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) репликация ДНК
Б) биосинтез белка
В) окисление органических веществ
Г) транскрипция
Д) синтез АТФ
Е) хемосинтез

Ответ


5. Установите соответствие между характеристиками и видами обмена: 1) пластический, 2) энергетический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) запасается энергия в молекулах АТФ
Б) синтезируются биополимеры
В) образуются углекислый газ и вода
Г) происходит окислительное фосфорилирование
Д) происходит репликация ДНК

Ответ


Выберите три процесса, относящихся к энергетическому обмену веществ.
1) выделение кислорода в атмосферу
2) образование углекислого газа, воды, мочевины
3) окислительное фосфорилирование
4) синтез глюкозы
5) гликолиз
6) фотолиз воды

Ответ


Выберите один, наиболее правильный вариант. Энергия, необходимая для мышечного сокращения, освобождается при
1) расщеплении органических веществ в органах пищеварения
2) раздражении мышцы нервными импульсами
3) окислении органических веществ в мышцах
4) синтезе АТФ

Ответ


Выберите один, наиболее правильный вариант. В результате какого процесса в клетке синтезируются липиды?
1) диссимиляции
2) биологического окисления
3) пластического обмена
4) гликолиза

Ответ


Выберите один, наиболее правильный вариант. Значение пластического обмена – снабжение организма
1) минеральными солями
2) кислородом
3) биополимерами
4) энергией

Ответ


Выберите один, наиболее правильный вариант. Окисление органических веществ в организме человека происходит в
1) легочных пузырьках при дыхании
2) клетках тела в процессе пластического обмена
3) процессе переваривания пищи в пищеварительном тракте
4) клетках тела в процессе энергетического обмена

Ответ


Выберите один, наиболее правильный вариант. Какие реакции обмена веществ в клетке сопровождаются затратами энергии?
1) подготовительного этапа энергетического обмена
2) молочнокислого брожения
3) окисления органических веществ
4) пластического обмена

Ответ


1. Установите соответствие между процессами и составляющими частями метаболизма: 1) анаболизм (ассимиляция), 2) катаболизм (диссимиляция). Запишите цифры 1 и 2 в правильном порядке.
А) брожение
Б) гликолиз
В) дыхание
Г) синтез белка
Д) фотосинтез
Е) хемосинтез

Ответ


2. Установите соответствие между характеристиками и процессами обмена веществ: 1) ассимиляция (анаболизм), 2) диссимиляция (катаболизм). Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) синтез органических веществ организма
Б) включает подготовительный этап, гликолиз и окислительное фосфорилирование
В) освобожденная энергия запасается в АТФ
Г) образуются вода и углекислый газ
Д) требует энергетических затрат
Е) происходит в хлоропластах и на рибосомах

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Обмен веществ – одно из основных свойств живых систем, он характеризуется тем, что происходит
1) избирательное реагирование на внешние воздействия окружающей среды
2) изменение интенсивности физиологических процессов и функций с различными периодами колебаний
3) передача из поколения в поколение признаков и свойств
4) поглощение необходимых веществ и выделение продуктов жизнедеятельности
5) поддержание относительно-постоянного физико-химического состава внутренней среды

Ответ


1. Все приведенные ниже термины, кроме двух, используются для описания пластического обмена. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) репликация
2) дупликация
3) трансляция
4) транслокация
5) транскрипция

Ответ


2. Все перечисленные ниже понятия, кроме двух, используют для описания пластического обмена веществ в клетке. Определите два понятия, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) ассимиляция
2) диссимиляция
3) гликолиз
4) транскрипция
5) трансляция

Ответ


3. Перечисленные ниже термины, кроме двух, используются для характеристики пластического обмена. Определите два термина, выпадающих из общего списка, и запишите цифры, под которыми они указаны.
1) расщепление
2) окисление
3) репликация
4) транскрипция
5) хемосинтез

Ответ


Выберите один, наиболее правильный вариант. Азотистое основание аденин, рибоза и три остатка фосфорной кислоты входят в состав
1) ДНК
2) РНК
3) АТФ
4) белка

Ответ


Все приведённые ниже признаки, кроме двух, можно использовать для характеристики энергетического обмена в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
1) идёт с поглощением энергии
2) завершается в митохондриях
3) завершается в рибосомах
4) сопровождается синтезом молекул АТФ
5) завершается образованием углекислого газа

Ответ


Найдите три ошибки в приведенном тексте. Укажите номера предложений, в которых они сделаны. (1) Обмен веществ, или метаболизм, – это совокупность реакций синтеза и распада веществ клетки и организма, связанных с выделением или поглощением энергии. (2) Совокупность реакций синтеза высокомолекулярных органических соединений из низкомолекулярных соединений относят к пластическому обмену. (3) В реакциях пластического обмена синтезируются молекулы АТФ. (4) Фотосинтез относят к энергетическому обмену. (5) В результате хемосинтеза синтезируются органические вещества из неорганических за счет энергии Солнца.

Ответ

© Д.В.Поздняков, 2009-2019

У фототрофных организмов в процессе фотосинтеза световая энергия превращается в химическую энергию сложных органических веществ, которые затем включаются в реакции дыхания и подвергаются биологическому окислению. В ходе дыхания значительная часть энергии окисления органических веществ используется для образования АТФ и других макроэргических соединений, с участием которых далее уже инициируются эндергонические реакции синтеза различных веществ, необходимых для обеспечения жизненных процессов организма. Энергия окисления органических веществ, трансформируемая в химическую энергию молекул АТФ, по флоэмной системе транспортируется в любые органы и ткани растения и может быть использована в них для осуществления биосинтетических процессов, внутриклеточного переноса веществ и ионов, инициации защитных реакций организма и др. У хемотрофных организмов происходят аналогичные процессы, связанные с окислением веществ и использованием их химической энергии для синтеза АТФ и других макроэргических соединений, которые далее включаются в различные сопряжённые биосинтетические процессы.

Таким образом, мы видим, что жизнедеятельность любых организмов складывается из двух противоположных процессов – распада веществ и сопряжённого с ним синтеза макроэргических соединений и биосинтетических процессов образования сложных веществ, в которых используется энергия макроэргических соединений. Процесс распада веществ, в ходе которого происходит ферментативное расщепление молекул углеводов, жиров, белков и др. соединений до более простых веществ и дальнейшее их окисление в реакциях дыхания, получил название катаболизма. А противоположный процесс синтеза сложных веществ, который сопровождается поглощением свободной энергии, называется анаболизмом. Оба эти процесса тесно связаны между собой в обмене веществ организма. Усиление биосинтетических реакций, характерных для процесса анаболизма, всегда требует активизации катаболизма, высвобождающего химическую энергию для синтеза макроэргических соединений, которые необходимы как биоэнергетические факторы сопряжения в анаболических реакциях. Общая направленность биоэнергетических процессов у растительных организмов, включающая процессы катаболизма и анаболизма, а также синтеза макроэргических соединений и их использования в биосинтетических реакциях схематически показана на рис. 14.

Как видно из этой схемы, в осуществлении биоэнергетических процессов важную роль играют макроэргические соединения и особенно АТФ как универсальный переносчик энергии от катаболических процессов к анаболическим. В отсутствие макроэргических соединений происходит разобщение анаболических и катаболических процессов, что приводит к прекращению нормального функционирования организма.

Вопросы для повторения.

    В чём состоят особенности функционирования биоэнергетических систем? 2. Как определить изменение внутренней энергии биохимической системы по теплоте сгорания реагирующих веществ и продуктов реакции? 3. Как оценить тепловой эффект биохимической реакции с использованием термодинамической функции, называемой энтальпией? 4. Каким образом используется термодинамическая функция энтропия для характеристики направленности биохимических превращений? 5. По каким термодинамическим критериям можно оценить экзергонические и эндергонические реакции? 6. С помощью каких расчётов можно определить изменение свободной энергии в ходе биохимических реакций? 7. Как определяется направленность и возможность самопроизвольного осуществления в окислительно-восстановительных реакциях? 8. Каковы особенности осуществления биохимических реакций в условиях физиологической среды? 9. Какие термодинамические принципы реализуются в ходе сопряжённого синтеза веществ? 10. Какова биологическая роль макроэргических соединений? 11. Какие известны разновидности макроэргических соединений? 12. В чём состоит роль АТФ как наиболее универсального макроэргического соединения? 13. Как происходит синтез АТФ в живых организмах? 14. Какова направленность биоэнергетических процессов в растительном организме? 15. В чём состоят биохимические особенности процессов катаболизма?

Резюме по модульной единице 6.

Совокупность всех биоэнергетических превращений в организме, обеспечивающих его нормальную жизнедеятельность в изменяющихся условиях окружающей среды, изучает раздел биохимии, называемый биохимической энергетикой. Для оценки энергетических параметров биохимических реакций используются термодинамические функции – внутренняя энергия системы, энтальпия, энтропия, свободная энергия Гиббса и др. Биохимические реакции осуществляются в открытых системах, которые обмениваются веществами и энергией с окружающей средой. Простейшая биохимическая система включает реагирующие вещества, продукты реакции, а также фермент, катализирующий данную реакцию. В связи с тем, что биохимические реакции протекают с очень высокой скоростью, а изменения внешней среды проходят относительно медленно, в биохимической энергетике принимается, что все процессы в организме осуществляются при постоянном давлении и постоянной температуре.

Изменение внутренней энергии системы определяется как алгебраическая сумма всех входящих в систему и выходящих из неё энергий. По изменению энтальпии определяются тепловые эффекты биохимических реакций (при Н<О реакция экзотермическая, при Н>О – эндотермическая). Изменение энтропии в ходе биохимических превращений используется для расчёта изменения свободной энергии. При самопроизвольных реакциях свободная энергия системы уменьшается (G<О), такие реакции называют экзергоническими. В ходе эндергонических реакций свободная энергия системы увеличивается (G>О).

Эндергонические реакции могут осуществляться самопроизвольно за счёт поглощения энергии, которая высвобождается в экзергонической реакции, при условии прохождения этих реакций в одной биохимической системе. Такие реакции называют сопряжёнными реакциями синтеза веществ. Коэффициент использования энергии при сопряжённом синтезе веществ составляет 40-60%. В сопряжённой экзергонической реакции превращению подвергаются вещества, называемые макроэргическими соединениями. В ходе превращения этих веществ высвобождается большое количество свободной энергии (при стандартных условиях –30-60 кДж/моль). К макроэргическим соединениям относятся нуклеозидполифосфаты (АТФ, ГТФ, ЦТФ, УТФ идр.), ацилфосфаты (1,3-дифосфоглицериновая кислота, ацетилфосфат), енолфосфаты (фосфоенолпировиноградная кислота), тиоэфиры (ацетилкофермент А, пропионил-кофермент А и др.), амидинфосфаты, имидазолы.

Макроэргические соединения синтезируются в ходе реакций распада веществ, называемых катаболическими реакциями, а используются для синтеза веществ в ходе анаболических реакций. Универсальным макроэргическим соединением является аденозинтрифосфорная кислота (АТФ), которая синтезируется в процессах субстратного, фотосинтетического и окислительного фосфорилирования. Концентрация АТФ в клетках организма поддерживается на определённом уровне с помощью регуляторных систем.

Тестовые задания к лекции 3. Тесты № 67-80.

Лекция 4. Ферменты.

Аннотация.

Излагаются строение, свойства и механизм действия ферментов. Указываются основные показатели, выражающие их каталитическую активность, а также активаторы и ингибиторы ферментов. Даются сведения об изоферментах, локализации ферментов и особеностях функционирования ферментных систем. Рассматриваются механизмы регуляции конститутивных ииндуцибельных ферментов. Объясняются принципы классификации ферментов и зависимость их активности от различных физиологических условий.

Ключевые слова: ферменты, каталитический (активный) центр фермента, гипотеза замка и ключа, гипотеза индуцированного соответствия, коферменты, железо-серные белки, катал, удельная и молярная активность ферментов, период полужизни фермента, изоферменты, константа Михаэлиса, активаторы и ингибиторы ферментов, конкурентные и неконкурентные ингибиторы, белковые ингибиторы ферментов, мультиферментные системы, конститутивные и индуцибельные ферменты, аллостерические ферменты, зимогены (проферменты), гормональная регуляция активности ферментов, оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы (синтетазы).

Рассматриваемые вопросы.

    Механизм действия ферментов.

    Строение двухкомпонентных ферментов.

    Каталитическая активность ферментов.

    Изоферменты.

    Изменение активности ферментов в зависимости от условий среды.

    Локализация ферментов.

    Регуляция ферментативных реакций.

    Классификация ферментов.

Модульная единица 7. Ферменты.

Цели и задачи изучения модульной единицы. Изучить строение, свойства и механизм действия ферментов, особенности регуляции ферментативных реакций и функционирования ферментных систем. Научить студентов использовать сведения о ферментах для прогнозирования интенсивности и направленности биохимических процессов в растениях при обосновании технологий выращивания сельскохо-зяйственных культур.

Вспомните из учебника «Человек и его здоровье», где и под воздействием каких ферментов расщепляются углеводы, жиры и белки при пищеварении. Что такое окисление, горение, дыхание?

Каждому организму в процессе жизнедеятельности необходима энергия. Движение, рост, развитие, размножение - все эти процессы связаны с затратой энергии. Автотрофные организмы способны аккумулировать солнечную энергию и благодаря ей синтезировать в своем теле органические вещества. Как же получают энергию гетеротрофные организмы?

Пищеварение и преобразование энергии. Гетеротрофные организмы получают органические вещества с пищей. Первоначальное расщепление веществ происходит в их пищеварительном тракте, а окончательное - на клеточном уровне. Высокомолекулярные органические вещества пищи не могут быть сразу усвоены клетками и тканями. Прежде всего, они должны быть разрушены до низкомолекулярных веществ, более доступных для клеточного усвоения. В результате сложных многоэтапных процессов диссимиляции выделяется энергия, которая частично расходуется в виде тепла, а частично преобразуется и запасается в молекулах АТФ.

Рассмотрим основные этапы протекания этих процессов у животных и человека.

На подготовительном этапе, называемом еще пищеварением, происходит расщепление органических веществ под воздействием ферментов в пищеварительном тракте. Так, белки расщепляются в желудке и в тонком кишечнике под действием ферментов - пепсина, трип сина до аминокислот. Расщепление полисахаридов начинается в ротовой полости в присутствие фермента слюны амилазы, а далее продолжается в двенадцатиперстной кишке. Там же расщепляются и жиры под действием липазы. Образующиеся низкомолекулярные вещества всасываются в кровь и доставляются ко всем органам, тканям и клеткам организма.

Вся выделяющаяся на подготовительном этапе энергия рассеивается в виде тепла.

Подготовительный этап (где Q - тепловая энергия): Белки + Н20 >> аминокислоты + Q

Жиры + Н2О >> глицерин + (высшие жирные кислоты) + Q Углеводы + Н2О >> глюкоза + Q

Расщепление глюкозы. Последующие этапы расщепления низкомолекулярных органических веществ протекают на клеточном уровне. Рассмотрим их на примере глюкозы (рис. 59). Именно это вещество служит основным источником энергии для большинства организмов.

Рис. 59. Общая схема расщепления глюкозы

Глюкоза в клетке может расщепляться двумя путями - анаэробно и аэробно. Процесс бескислородного расщепления протекает в цитоплазме клетки. В зависимости от типа клеток и организмов из глюкозы могут образовываться пировиноградная кислота, молочная кислота, этиловый спирт, уксусная кислота или другие низкомолекулярные органические вещества. Выделяющаяся при этом энергия запасается в двух молекулах АТФ, а частично рассеивается в виде тепла. Некоторые процессы бескислородного расщепления глюкозы называют брожением. Они характерны для анаэробных микроорганизмов, например, для молочнокислых бактерий и дрожжей.

Молочнокислое брожение наблюдается и у аэробных организмов при недостатке кислорода в тканях. Например, нетренированный человек после интенсивной физической нагрузки чувствует боль в мышцах (рис. 60). Образовавшаяся там молочная кислота раздражает нервные окончания. Примерно через двое суток боль стихает, молочная кислота окисляется дальше.

Рис. 60. При интенсивной физической нагрузке и недостатке кислорода в мышцах образуется и накапливается молочная кислота

У аэробных организмов все промежуточные вещества, образующиеся из глюкозы при бескислородном расщеплении, окисляются кислором воздуха до углекислого газа и воды. Этот последний этап диссимиляции называют биологическим окислением или клеточным дыханием. Он протекает в митохондриях. В реакциях кислородного расщепления глюкозы выделяется значительно больше энергии, основная часть которой запасается в 38 молекулах АТФ.

Аэробное расщепление глюкозы энергетически в 19 раз выгоднее, чем анаэробное. В этом процессе образуются только энергетически бедные неорганические вещества, а клетка запасает максимальное количество энергии в виде молекул АТФ.

Процессы клеточного дыхания по конечному результату схожи с процессами горения. Например, если сжечь сахар (рис. 61), то также получается углекислый газ и вода. Но эти процессы существенно различаются по сберегаемости энергии. При горении вся энергия переходит в световую и тепловую, ничего при этом не запасается. При клеточном дыхании запасается энергия в молекулах АТФ, которая впоследствии расходуется во всех процессах жизнедеятельности: синтезе органических веществ, росте, развитие, движение и др.

Рис 61. Горение сахара

Упражнения по пройденному материалу

  1. Что общего в реакциях превращения белков, жиров и углеводов в пищеварительном тракте человека? Как называют такие реакции?
  2. Как используется организмом энергия, освобождающаяся на подготовительном этапе диссимиляции?
  3. В результате каких процессов образуются, в организме углекислый газ и вода? Где в клетке протекают эти реакции?
  4. Где и как используется кислород, поступающий в организм при дыхании?
  5. АТФ синтезируется о митохондриях и хлоропластах. Объясните, в чем сходство и различие процессов, приводящих к синтезу молекул АТФ.

Основное резервное энергетическое вещество растений - крахмал, занимает в их органах много места. Однако это не является помехой, так как растения активно не передвигаются. Большинство живот ных, напротив, вынуждены быстро перемещаться, что привело к запасанию у них жиров, которые при одинаковом с углеводами объеме, резервируют в два с половиной раза больше энергии.

Статьи по теме: