Нетрадиционные (возобновляемые) источники энергии. Нетрадиционные (возобновляемые) источники энергии Нетрадиционные и возобновляемые источники энергии 20.03 01

Введение

На современном этапе развития цивилизации экономический рост в любой стране самым тесным образом связан с функционированием топливно-энергетического комплекса. При этом наиболее конкурентоспособными являются те страны, где энергетические ресурсы используются в максимальном объеме и с высокой степенью эффективности. Экономика России базируется на невозобновляемых углеводородных топливно-энергетических ресурсах, причем, в большей степени, чем в большинстве промышленно развитых стран мира

Разведанные запасы традиционных углеводородных ресурсов в России пока позволяют обеспечивать текущие потребности национальной экономики и получать существенные доходы от экспорта энергоносителей. В то же время с каждым годом наблюдается ухудшение горно-геологических условий добычи горючих полезных ископаемых. С начала 90-х годов прошлого века восполнение запасов углеводородных ресурсов отстает от темпов роста их добычи.

В перспективе будут постоянно возрастать требования к защите окружающей среды при сжигании традиционных углеводородных ресурсов. Снижение энергоемкости российской экономики в отличие от ведущих промышленно развитых стран не являлось следствием комплексного проведения энергосберегающих мероприятий. В данном случае сыграли свою роль факторы, связанные со спадом производства, глобальным потеплением климата, повышением доли природного газа в энергетическом балансе и изменением структуры производства ВВП в сторону увеличения доли производства услуг. Производство услуг обычно менее энергоемко по сравнению с производством товаров.

Если разрыв в уровне энергоемкости ВВП будет сохраняться, то это несомненно окажет негативное воздействие на конкурентоспособность российских товаров на мировом рынке.

Уже в ближайшей перспективе все большую часть прироста национальных потребностей России в топливе и энергии необходимо будет обеспечивать за счет мероприятий по энергосбережению. В основных положениях Энергетической стратегии России до 2020 года энергосбережение предполагается в основном осуществлять за счет организационных и технологических мероприятий, направленных на более эффективное использование традиционных видов топливно-энергетических ресурсов.

Следует, однако, подчеркнуть, что энергосбережение - это не только внедрение технологий, позволяющих увеличить эффективность использования традиционных энергоносителей, но также и диверсификация энергобаланса за счет использования альтернативных источников энергии. К сожалению, последнему аспекту в стратегии энергосбережения уделяется недостаточно внимания.

В стратегическом плане среди альтернативных источников энергии наиболее важную роль будут играть возобновляемые источники энергии (ВИЭ). Среди них особый интерес представляют нетрадиционные возобновляемые источники энергии (НВИЭ): энергия солнца, ветра, тепла земли, малых рек, океана, биомассы и торфа.

В данном реферате мы рассмотрим возобновляемые источники энергии, их достоинства и недостатки, и перспективы использования ВИЭ в России.

Глава 1. Характеристики возобновляемых источников энергии и основные аспекты их использования в России

.1 Возобновляемые источники энергии

Это виды энергии, непрерывно возобновляемые в биосфере Земли. К ним относится энергия солнца, ветра, воды (в том числе сточных вод), исключая применения данной энергии на гидроаккумулирующих электроэнергетических станциях. Энергия приливов, волн водных объектов, в том числе водоемов, рек, морей, океанов. Геотермальная энергия с использованием природных подземных теплоносителей. Низкопотенциальная тепловая энергия земли, воздуха, воды с применением особых теплоносителей. Биомасса, включающая в себя специально выращенные для получения энергии растения, в том числе деревья, а также отходы производства и потребления, за исключением отходов, полученных в процессе использования углеводородного сырья и топлива. А также биогаз; газ, выделяемый отходами производства и потребления на свалках таких отходов; газ, образующийся на угольных разработках.

Теоретически возможна и энергетика, основанная на использовании энергии волн, морских течений, теплового градиента океанов (ГЭС установленной мощностью более 25 МВт). Но пока она не получила распространения.

Способность источников энергии возобновляться не означает, что изобретен вечный двигатель. Возобновляемые источники энергии (ВИЭ) используют энергию солнца, тепла, земных недр, вращения Земли. Если солнце погаснет, то Земля остынет, и ВИЭ не будут функционировать.

1.2 Преимущества возобновляемых источников энергии в сравнении с традиционными

Традиционная энергетика основана на применении ископаемого топлива, запасы которого ограничены. Она зависит от величины поставок и уровня цен на него, конъюнктуры рынка.

Возобновляемая энергетика базируется на самых разных природных ресурсах, что позволяет беречь невозобновляемые источники и использовать их в других отраслях экономики, а также сохранить для будущих поколений экологически чистую энергию.

Независимость ВИЭ от топлива обеспечивает энергетическую безопасность страны и стабильность цен на электроэнергию

ВИЭ экологично чисты: при их работе практически нет отходов, выброса загрязняющих веществ в атмосферу или водоемы. Отсутствуют экологические издержки, связанные с добычей, переработкой и транспортировкой ископаемого топлива.

В большинстве случаев ВИЭ-электростанции легко автоматизируются и могут работать без прямого участия человека.

В технологиях возобновляемой энергетики реализуются новейшие достижения многих научных направлений и отраслей: метеорологии, аэродинамики, электроэнергетики, теплоэнергетики, генераторо- и турбостроения, микроэлектроники, силовой электроники, нанотехнологий, материаловедения и т. д. Развитие наукоемких технологий позволяет создавать дополнительные рабочие места за счет сохранения и расширения научной, производственной и эксплуатационной инфраструктуры энергетики, а также экспорта наукоемкого оборудования.

1.3 Наиболее распространенные возобновляемые источники энергии

И в России, и в мире - это гидроэнергетика. Около 20% мировой выработки электроэнергии приходится на ГЭС.

Активно развивается мировая ветроэнергетика: суммарные мощности ветрогенераторов удваиваются каждые четыре года, составляя более 150 000 МВт. Во многих странах ветроэнергетика занимает прочные позиции. Так, в Дании более 20% электроэнергии вырабатывается энергией ветра.

Доля солнечной энергетики относительно небольшая (около 0,1% мирового производства электроэнергии), но имеет положительную динамику роста.

Геотермальная энергетика имеет важное местное значение. В частности, в Исландии такие электростанции вырабатывают около 25% электроэнергии.

Приливная энергетика пока не получила значительного развития и представлена несколькими пилотными проектами.

.4 Состояние возобновляемой энергетики в России

Этот вид энергетики представлен в России главным образом крупными гидроэлектростанциями, обеспечивающими около 19% производства электроэнергии в стране. Другие виды ВИЭ в России пока заметны слабо, хотя в некоторых регионах, например на Камчатке и Курильских островах, они имеют существенное значение в местных энергосистемах. Суммарная мощность малых гидроэлектростанций порядка 250 МВт, геотермальных электростанций - около 80 МВт. Ветроэнергетика позиционируется несколькими пилотными проектами общей мощностью менее 13 МВт. Приливная энергетика ограничена возможностями экспериментальной Кислогубской ПЭС.

Глава 2. Обзор возобновляемых источников энергии

.1 Энергия солнца

Солнечная энергетика - использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и в перспективе может стать экологически чистой, то есть не производящей вредных отходов

.1.1 Способы получения электричества и тепла из солнечного излучения

Получение электроэнергии с помощью фотоэлементов

Преобразование энергии в фотоэлементах основано на фотовольтаическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.

Неоднородность структуры фотоэлементов может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны - энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов.Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств фотоэлементов, среди которых наиболее важную роль играет фотопроводимость. Она обусловлена явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.

гелиотермальная энергетика <#"184" src="/wimg/11/doc_zip1.jpg" />

Солнечный водонагреватель

Устройство состоит из короба со змеевиком, бака холодной воды, бака-аккумулятора и труб. Короб стационарно устанавливается под углом 30-50° с ориентацией на южную сторону. Холодная, более тяжелая, вода постоянно поступает в нижнюю часть короба, там она нагревается и, вытесненная холодной водой, поступает в бак-аккумулятор. Она может быть использована для отопления, для душа либо для других бытовых нужд. Дневная производительность на широте 50° примерно равна 2 кВт/ч с квадратного метра. Температура воды в баке-аккумуляторе достигает 60-70°. КПД установки - 40%.

С олнечный парус - приспособление, использующее давление солнечного света <#"justify">a) Солнечные коллекторы-концентраторы

Солнечный коллектор - устройство для сбора энергии Солнца, переносимой видимым светом и ближним инфракрасным излучением. Солнечные коллекторы применяются для отопления промышленных и бытовых помещений, для горячего водоснабжения производственных процессов и бытовых нужд. Наибольшее количество производственных процессов, в которых используется тёплая и горячая вода (30-90°C), проходят в пищевой и текстильной промышленности, которые таким образом имеют самый высокий потенциал для использования солнечных коллекторов. В Европе в 2000 г. общая площадь солнечных коллекторов составляла 14,89 млн. м², а во всём мире - 71,341 млн. м². Солнечные коллекторы - концентраторы могут производить электроэнергию с помощью фотоэлектрических элементов

б) Параболоцилиндрические концентраторы

Параболоцилиндрические концентраторы имеют форму параболы, протянутую вдоль прямой. Параболоцилиндрический зеркальный концентратор фокусирует солнечное излучение в линию и может обеспечить его стократную концентрацию. В фокусе параболы размещается трубка с теплоносителем (масло), или фотоэлектрический элемент. Масло нагревается в трубке до температуры 300-390°C.

Параболоцилиндрические зеркала изготовляют длиной до 50 метров. Зеркала ориентируют по оси север-юг, и располагают рядами через несколько метров. Теплоноситель поступает в тепловой аккумулятор для дальнейшей выработки электроэнергии паротурбинным генератором. С 1984 по 1991 г. в Калифорнии было построено девять электростанций из параболоцилиндрических концентраторов общей мощностью 354 МВт. Стоимость электроэнергии составляла около $0,12 за кВтч. Германская компания Solar Millennium AG строит во Внутренней Монголии (Китай) солнечную электростанцию. Общая мощность электростанции увеличится до 1000 МВт к 2020 году. Мощность первой очереди составит 50 МВт. В июне 2006 г. в Испании была построена первая термальная солнечная электростанция мощностью 50 МВт. В Испании к 2010 году может быть построено 500 МВт электростанций с параболоцилиндрическими концентраторами. Всемирный банк финансирует строительство подобных электростанций в Мексике, Марокко, Алжире, Египте и Иране. Концентрация солнечного излучения позволяет сократить размеры фотоэлектрического элемента. Но при этом снижается его КПД, и требуется некая система охлаждения.

c) Параболические концентраторы

Параболические концентраторы имеют форму спутниковой тарелки. Параболический отражатель управляется по двум координатам при слежении за солнцем. Энергия солнца фокусируется на небольшой площади. Зеркала отражают около 92% падающего на них солнечного излучения. В фокусе отражателя на кронштейне закреплён двигатель Стирлинга, или фотоэлектрические элементы. Двигатель Стирлинга располагается таким образом, чтобы область нагрева находилась в фокусе отражателя. В качестве рабочего тела двигателя Стирлинга используется, как правило, водород, или гелий.

В феврале 2008 года Национальная лаборатория Sandia достигла эффективности 31,25% в установке, состоящей из параболического концентратора и двигателя Стирлинга.

В настоящее время строятся установки с параболическими концентраторами мощностью 9-25 кВт. Разрабатываются бытовые установки мощностью 3 кВт. КПД подобных систем около 22-24%, что выше, чем у фотоэлектрических элементов. Коллекторы производятся из обычных материалов: сталь, медь, алюминий, и т. д. без использования кремния солнечной чистоты. В металлургии используется так называемый «металлургический кремний» чистотой 98%. Для производства фотоэлектрических элементов используется кремний «солнечной чистоты», или «солнечной градации» с чистотой 99,9999%.В 2001 году стоимость электроэнергии, полученной в солнечных коллекторах составляла $0,09-0,12 за кВтч. Департамент энергетики США прогнозирует, что стоимость электроэнергии, производимой солнечными концентраторами снизится до $0,04-0,05 к 2015-2020 г. Компания Stirling Solar Energy разрабатывает солнечные коллекторы крупных размеров - до 150 кВт с двигателями Стирлинга. Компания строит в южной Калифорнии крупнейшую в мире солнечную электростанцию. До 2010 г. будет построено 20 тыс. параболических коллекторов диаметром 11 метров. Суммарная мощность электростанции может быть увеличена до 850 МВт.

д) Освещение зданий с помощью световых колодцев

Световой колодец (англ. lighttubeorlightpipe) - оборудование для освещения помещений при помощи естественного солнечного света. Световой колодец представляет cобой трубу, передающую солнечный свет с минимальными потерями. Простейший вариант светового колодца - отверстие в потолке. Солнечные колодцы применяются для освещения как промышленных, так и жилых зданий в дневное время суток. Могут применяться в больших промышленных зданиях: складах, цехах, подземных помещениях и т. д.

.1.3 Достоинства и недостатки солнечной энергетики

Достоинства

Общедоступность и неисчерпаемость источника.

Теоретически, полная безопасность для окружающей среды (однако в настоящее время в производстве фотоэлементов и в них самих используются вредные вещества). Существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Недостатки

Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках.

Дороговизна солнечных фотоэлементов. Вероятно, с развитием технологии этот недостаток преодолеют. В 1990-2005 гг. цены на фотоэлементы снижались в среднем на 4% в год.

Недостаточный КПД солнечных элементов (вероятно, будет вскоре увеличен).

Поверхность фотопанелей нужно очищать от пыли и других загрязнений. При их площади в несколько квадратных километров это может вызвать затруднения.

Эффективность фотоэлектрических элементов заметно падает при их нагреве, поэтому возникает необходимость в установке систем охлаждения, обычно водяных.

Через 30 лет эксплуатации эффективность фотоэлектрических элементов начинает снижаться.

Вывод

Сегодня солнечная энергетика широко применяется в случаях, когда малодоступность других источников энергии в совокупности с изобилием солнечного излучения оправдывает её экономически. В России солнечная энергетика существует только в виде небольших установок автономного энергоснабжения, не подключенных к энергосистеме и применяемых частными лицами и небольшими организациями.

.2 Ветровая энергия

Ветер - поток воздуха, движущийся относительно земной поверхности со скоростью свыше 0,6 м/с.

Ветры над большими площадями образуют обширные воздушные течения - муссоны, пассаты, из которых слагается общая и местная циркуляция атмосферы.

Ветроэнергетика - отрасль энергетики, специализирующаяся на использовании энергии ветра - кинетической энергии воздушных масс в атмосфере. Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца.

.2.1 Получение энергии с помощью ветрогенераторов

Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) - устройство для преобразования кинетической энергии ветра в электрическую.


.2.2Типы ветродвигателей

Большинство типов ветродвигателей известны так давно, что история умалчивает имена их изобретателей. Основные разновидности ветроагрегатовделятся на две группы:

Ветродвигатели с горизонтальной осью вращения (крыльчатые) (2-5);

Ветродвигатели с вертикальной осью вращения (карусельные: лопастные (1) и ортогональные (6)).

Типы крыльчатых ветродвигателей отличаются только количеством лопастей.

a) Крыльчатые

Для крыльчатых ветродвигателей, наибольшая эффективность которых достигается при действии потока воздуха перпендикулярно к плоскости вращения лопастейкрыльев, требуется устройство автоматического поворота оси вращения. С этой целью применяют крыло-стабилизатор. Распространение крыльчатых ветроагрегатов объясняется величиной скорости их вращения. Они могут непосредственно соединяться с генератором электрического тока без мультипликатора. Скорость вращения крыльчатых ветродвигателей обратно пропорциональна количеству крыльев, поэтому агрегаты с количеством лопастей больше трех практически не используются.

б) Карусельные

Различие в аэродинамике дает карусельным установкам преимущество в сравнении с традиционными ветряками. При увеличении скорости ветра они быстро наращивают силу тяги, после чего скорость вращения стабилизируется. Карусельные ветродвигатели тихоходны и это позволяет использовать простые электрические схемы, например, с асинхронным генератором, без риска потерпеть аварию при случайном порыве ветра. Тихоходность выдвигает одно ограничивающее требование - использование многополюсного генератора работающего на малых оборотах. Такие генераторы не имеют широкого распространения, а использование мультипликаторов - повышающий редуктор не эффективно из-за низкого КПД последних. Еще более важным преимуществом карусельной конструкции стала ее способность без дополнительных ухищрений следить за тем «откуда дует ветер», что весьма существенно для приземных рыскающих потоков. Ветродвигатели подобного типа строятся в США, Японии, Англии, ФРГ, Канаде. Карусельный лопастный ветродвигатель наиболее прост в эксплуатации. Его конструкция обеспечивает максимальный момент при запуске ветродвигателя и автоматическое саморегулирование максимальной скорости вращения в процессе работы. С увеличением нагрузки уменьшается скорость вращения и возрастает вращающий момент вплоть до полной остановки.

c) Ортогональные

Ортогональные ветроагрегаты, как полагают специалисты, перспективны для большой энергетики. Сегодня перед ветропоклонниками ортогональных конструкций стоят определенные трудности. Среди них, в частности, проблема запуска. В ортогональных установках используется тот же профиль крыла, что и в дозвуковом самолете. Самолет, прежде чем «опереться» на подъемную силу крыла, должен разбежаться. Так же обстоит дело и в случае с ортогональной установкой. Сначала к ней нужно подвести энергию - раскрутить и довести до определенных аэродинамических параметров, а уже потом она сама перейдет из режима двигателя в режим генератора.

Отбор мощности начинается при скорости ветра около 5 м/с, а номинальная мощность достигается при скорости 14-16 м/с. Предварительные расчеты ветроустановок предусматривают их использование в диапазоне от 50 до 20 000 кВт. В реалистичной установке мощностью 2000 кВт диаметр кольца, по которому движутся крылья, составит около 80 метров. У мощного ветродвигателя большие размеры. Однако можно обойтись и малыми - взять числом, а не размером. Снабдив каждый электрогенератор отдельным преобразователем можно просуммировать выходную мощность вырабатываемую генераторами. В этом случае повышается надежность и живучесть ветроустановки.

2.2.3 Достоинства и недостатки ветрогенераторов

Достоинства

Экологически-чистый вид энергии

Эргономика

Возобновимая энергия

Ветровая энергетика - лучшее решение для труднодоступных мест.

Недостатки

Нестабильность

Относительно невысокий выход электроэнергии

Высокая стоимость

Природные условия

Шумовое загрязнение

Вывод

Ветроэнергетика является наиболее развитой сферой практического использования природных возобновляемых энергоресурсов. Мировыми лидерами в ветроэнергетике являются США, Германия, Нидерланды, Дания, Индия. В настоящее время в России возникли новые организации, занимающиеся ветроэнергетикой, постепенно налаживается сотрудничество с зарубежными партнерами.

В России, по мнению экспертов, уникальное сочетание благоприятных факторов для развития ветроэнергетики:

обширная территория;

богатый и хорошо изученный потенциал ветра (127 ТВтч);

большие объёмы энергопотребления, связанные с климатическими условиями и структурой экономики.

В настоящее время, прорабатывается и реализуется целый ряд проектов строительства ветроэнергетических станций (ВЭС), мощностью чаще всего от 100 до 300 МВт каждая, практически по всей территории страны, хотя большая часть сконцентрирована на северо-западе и юге европейской части России: Ленинградская область; Псковская область; Ростовская область и Северный Кавказ (Порт Кавказ, Анапа, Темрюк, Карачаево-Черкесия); Оренбург; Остров Русский в Приморье.

Всего в России насчитывается 20-25 проектов ВЭС в разной степени продвижения.

электричество солнце ветер биомасса

2.3 Геотермальная энергия

Геотермальная энергетика - производство электроэнергии, а также тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли. Обычно относится к альтернативным источникам энергии, возобновимым энергетическим ресурсам.

Тепловая энергия недр образуется за счет расщепления радионуклидов в середине планеты. Этот экологически чистый и постоянно обновляемый источник энергии может быть использован в регионах с вулканическими проявлениями и геологическими аномалиями, когда вода вблизи от поверхности земли нагревается до температуры кипения, в результате чего в виде водяного пара может подаваться на турбины для производства тока. Горячая вода естественных источников (гейзеров) может быть использована непосредственно.

Однако тепло Земли очень "рассеянно", и в большинстве районов мира человеком может использоваться с выгодой только очень небольшая часть энергии. Из них пригодные для использования геотермальные ресурсы составляют около 1% общей теплоемкости верхней 10-километровой толщи земной коры.

Источники геотермальной энергии

по классификации Международного энергетического агентства делятся на 5 типов:

месторождения геотермального сухого пара - сравнительно легко разрабатываются, но довольно редки; тем не менее, половина всех действующих в мире ГеоТЭС использует тепло этих источников;

источники влажного пара (смеси горячей воды и пара) - встречаются чаще, но при их освоении приходится решать вопросы предотвращения коррозии оборудования ГеоТЭС и загрязнения окружающей среды (удаление конденсата из-за высокой степени его засоленности);

месторождения геотермальной воды (содержат горячую воду или пар и воду) - представляют собой так называемые геотермальные резервуары, которые образуются в результате наполнения подземных полостей водой атмосферных осадков, нагреваемой близко лежащей магмой;

сухие горячие скальные породы, разогретые магмой (на глубине 2 км и более) - их запасы энергии наиболее велики;

магма, представляющая собой нагретые до 1300 °С расплавленные горные породы.

Опыт, накопленный различными странами (в том числе и Россией), относится в основном к использованию природного пара и термальных вод, которые остаются пока наиболее реальной базой геотермальной энергетики. Однако ее крупномасштабное развитие в будущем возможно лишь при освоении петрогеотермальных ресурсов, т. е. тепловой энергии горячих горных пород, температура которых на глубине 3-5 км обычно превышает 100°С.

Для использования геотермальной энергии используют высокотемпературные геотермальные энергетические и тепловые станции (ГеоЭС) и низкотемпературные тепловые насосы (ТН).

2.3.1 Геотермальные электростанции

Способы использования геотермальной энергии

Существует два основных способа использования геотермальной энергии: прямое использование тепла и производство электроэнергии. Прямое использование тепла является наиболее простым и поэтому наиболее распространенным способом. Практика прямого использования тепла широко распространенна в высоких широтах на границах тектонических плит, например в Исландии и Японии. Водопровод в таких случаях монтируется непосредственно в глубинные скважины. Получаемая горячая вода применяется для подогрева дорог, сушки одежды и обогрева теплиц и жилых строений. Способ производства электричества из геотермальной энергии очень похож на способ прямого использования. Единственным отличием является необходимость в более высокой температуре (более 1500С).

Принципы работы

В настоящее время существует три схемы производства электроэнергии с использованием гидротермальных ресурсов: прямая с использованием сухого пара, непрямая с использованием водяного пара и смешанная схема производства (бинарный цикл). Тип преобразования зависит от состояния среды (пар или вода) и ее температуры. Первыми были освоены электростанции на сухом пару. Для производства электроэнергии на них пар, поступающий из скважины, пропускается непосредственно через турбину/генератор. Электростанции с непрямым типом производства электроэнергии на сегодняшний день являются самыми распространенными. Они используют горячие подземные воды (температурой до 182 0С) которая закачивается при высоком давлении в генераторные установки на поверхности. Геотермальные электростанции со смешанной схемой производства отличаются от двух предыдущих типов геотермальных электростанций тем, что пар и вода никогда не вступают в непосредственный контакт с турбиной/генератором.

Геотермальные электростанции, работающие на сухом пару

Паровые электростанции работают преимущественно на гидротермальном пару. Пар поступает непосредственно в турбину, которая питает генератор, производящий электроэнергию. Использование пара позволяет отказаться от сжигания ископаемого топлива (также отпадает необходимость в транспортировке и хранении топлива). Это старейшие геотермальные электростанции. Первая такая электростанция была построена в Лардерелло (Италия) в 1904 году, она действует и в настоящее время. Паровая технология используется на электростанции «Гейзерс» в Северной Калифорнии - это самая крупная геотермальная электростанция в мире.

Геотермальные электростанции на парогидротермах

Для производства электричества на таких заводах используются перегретые гидротермы (температура выше 182°С). Гидротермальный раствор нагнетается в испаритель для снижения давления, из-за этого часть раствора очень быстро выпаривается. Полученный пар приводит в действие турбину. Если в резервуаре остается жидкость, то ее можно выпарить в следующем испарителе для получения еще большей мощности.

Геотермальные электростанции с бинарным циклом производства электроэнергии

Большинство геотермальных районов содержат воду умеренных температур (ниже 2000С). На электростанциях с бинарным циклом производства эта вода используется для получения энергии. Горячая геотермальные вода и вторая, дополнительная жидкость с более низкой точкой кипения, чем у воды, пропускаются через теплообменник. Тепло геотермальной воды выпаривает вторую жидкость, пары которой приводят в действие турбины. Так как это замкнутая система, выбросы в атмосферу практически отсутствуют. Воды умеренной температуры являются наиболее распространенным геотермальным ресурсом, поэтому большинство геотермальных электростанций будущего будут работать на этом принципе.

.3.2 Тепловые насосы

Одним их приоритетных направлений развития альтернативной энергетики в мире является освоение низкопотенциальной энергии Земли (тепла грунта, грунтовых вод и поверхностных водоемов, аккумулированное в поверхностных слоях земной коры).

Низкопотенциальные геотермальные ресурсы (НГР) могут использоваться для обеспечения тепло- и хладоснабжения (кондиционирования), горячего водоснабжения зданий и сооружений всех типов, а также энергоснабжения технологических процессов. Технология их освоения заключается в использовании систем извлечения энергии, ее обработки и доставки теплоносителя к потребителю. Главным компонентом подобных систем являются геотермальные тепловые насосы (ГТН).

Геотермальные тепловые насосы представляют собой устройства, осуществляющие обратный термодинамический цикл, благодаря чему низкопотенциальная энергия переносится на более высокий уровень.

Помимо геотермального тепла, источником энергии для тепловых насосов может служить тепло сточных и оборотных вод, что позволяет параллельно решать проблему эксплуатации вторичных энергоносителей.

На сегодняшний день используются парокомпрессионные геотермальные тепловые насосы (ПТН), работающие на хладонах, и адбсорционные геотермальные тепловые насосы (АТН), в которых рабочими веществами выступают вода и водный раствор бромистого лития. Однако, в связи с меньшей эффективностью и сложностью конструкции, АТН не получили распространения.

Принцип работы теплового насоса

Тепловой насос - это устройство, которое работает по принципу обратной холодильной машины, передавая тепло от низкотемпературного источника к среде с более высокой температурой, например системе отопления вашего дома.

бак-аккумулятор - теплоизолированная ёмкость для воды, предназначена для накопления горячей воды, с целью выравнивания тепловых нагрузок системы отопления и горячего водоснабжения, а также увеличивает срок работы теплового насоса.

первичный грунтовый контур - закрытая циркуляционная система, которая состоит из испарителя (теплового насоса), циркуляционного насоса грунтового контура, трубопроводов, и служит для передачи тепла от грунта к тепловому насосу.

вторичный грунтовый контур - закрытая система, которая состоит с конденсатора (теплового насоса), циркуляционного насоса, трубопроводов, и служит для передачи тепла от теплового насоса к системе отопления в доме.

Принцип работы теплового насоса похож к работе обыкновенного холодильника, только наоборот. Холодильник отбирает тепло от пищевых продуктов и переносит его наружу. Тепловой насос переносит тепло, накопленное в почве, земле, водоеме, подземных водах или воздухе, в Ваш дом. Как и холодильник, этот энергоэффективный теплогенератор имеет следующие основные элементы:

конденсатор (теплообменник, в котором происходит передача тепла от хладагента к элементам системы отопления помещения: низкотемпературным радиаторам, фанкойлам, теплому полу);

дроссель (устройство, которое служит для снижения давления, температуры и, как следствие, замыкания теплофикационного цикла в тепловом насосе);

испаритель (теплообменник, в котором происходит отбор тепла от низкотемпературного источника к тепловому насосу);

компрессор (устройство, в которое повышает давление и температуру паров хладагента).

Виды теплосъема тепловым насосам

) Земляной горизонтальный контур

Использует энергию, накопленную на поверхности земли (глубина от 1м до 2,5 м). Летом Тепловой насос забирает лишнее тепло из дома и переносит его под землю. Зимой Тепловой насос забирает накопленное за лето тепло и отдаёт обратно в дом

) Земляной вертикальный контур

Использует энергию, накопленную в глубине земли (глубина 30-200 м). Бурится вертикальная скважина и в неё опускается замкнутая труба, по которому течёт теплоноситель. Тепло уносится грунтовыми водами летом и подается зимой.

) Подземные воды

Использует энергию, грунтовой воды.Грунтовые воды круглогодично имеют температуру +5+12 С.Даже в самый сильный мороз Вы получите «бездонный» источник тепла, а летом - приятную прохладу

) Энергия водоёма

Использует энергию, накопленную в летний период водоёма. Энергия водоёма имеет зимой температуру +3 +5 С. Даже в самый сильный мороз Вы получите «бездонный» источник тепла, а летом - приятную прохладу.

Преимущества и недостатки теплового насоса

Преимущества

Высокая экономичность.

Не требует постоянного сервисного обслуживани.

Длительный срок эксплуатации (до 50 лет).

Экологически чистая и безопасная систем.

Возможность использования в одной установке нескольких систем (отопление, горячее водоснабжение, кондиционирование.

Низкий уровень шумов.

Срок окупаемости установки от 3-х до 5-ти лет.

Недостатки

Высокая начальная стоимость оборудования и установки внешнего коллектора или скважины забора воды.

2.3.3 Преимущества и недостатки геотермальной энергетики

Основной недостаток геотермальной энергии - необходимость обратной закачки отработанной воды в подземный водоносный горизонт. Другой недостаток этой энергии заключается в высокой минерализации термальных вод большинства месторождений и наличии в воде токсичных соединений и металлов, что в большинстве случаев исключает возможность сброса этих вод в расположенные на поверхности природные водные системы. Отмеченные выше недостатки геотермальной энергии приводят к тому, что для практического использования теплоты геотермальных вод необходимы значительные капитальные затраты на бурение скважин, обратную закачку отработанной геотермальной воды, а также на создание коррозийно-стойкого теплотехнического оборудования.

Вывод

Всего в России можно выделить три основные зоны, в зависимости от типа и возможностей использования геотермальной энергии:

Камчатка и Курилы - наиболее «горячие»точки;

Северный Кавказ и зона, прилегающая к Байкалу, где возможно использование глубинных вод для теплоснабжения;

Потенциально обширная территория, охватывающая 2/3 России, где возможно использование низкопотенциальной энергии с помощью тепловых насосов.

Принципом теплового насоса, используемым в большом масштабе, можно назвать и петротермальную энергетику, использующую энергию фонового теплового потока, исходящего из недр Земли.

Геотермальная энергетика России ориентирована как на строительство «гигантов» (крупных объектов), так и на использование геотермальной энергии для отдельных домов, школ, больниц, частных магазинов и других объектов мощностью 0,1-0,4 МВт с использованием геотермальных циркуляционных систем.

В настоящий момент в России разведано около полусотни геотермальных месторождений. Для дальнейшего развития геотермальной энергетики необходимы инвестиции и поддержка государства. Введение геотермальной энергетики в энергобаланс страны позволит, с одной стороны, повысить энергетическую безопасность, с другой - снизить вредное воздействие на экологическую обстановку по сравнению с традиционными источниками.

2.4 Биогазовая энергетика

Биогаз - газ, получаемый метановым брожением биомассы. В результате биохимической реакции, в которой принимают участие метановые бактерии, выделяется биогаз, его основными составляющими являются: метан (СН4, около 70%), углекислый газ (СО2, около 30%) и некоторое количество H2, H2S, N2. Теплотворная способность данной газовой смеси от 5000 до 8000 Ккал/м3, в зависимости от состава органических отходов.

2.4.1 Получение биогаза

Суть процесса получения биогаза в биореакторе сводится к следующему:

·загрузка реактора измельченными органическими отходами,

·создание условий для начала химической реакции разложения органики,

·отвод полученного биогаза и его накопление с одновременным созданием необходимого рабочего давления,

·вывод твердых фракций за пределы реактора, полученных в результате реакции разложения.

Теперь более подробно о каждом процессе.

2.4.2 Сырьё:

навоз и помет птиц, растительные и молочные отходы, энергетические культуры (силосная кукуруза).

Следует отметить, что для большей эффективности, растительные отходы следует измельчать до минимально возможных размеров и готовить смесь.

Пропорциональное смешение органики с целью повышения объема выхода биогаза:

·навоз КРС + помет птиц дает увеличение выхода биогаза на 6%

·навоз КРС + куриный помет + навоз свиней (1: 0,5: 0,5) - на 11%

·навоз КРС + свиной - на 7%

·навоз КРС + сосняки (опавшая хвоя) - на 5%

·надо заметить, что птичий помет в чистом виде не может перерабатываться в биогаз в обычном реакторе поскольку содержат высокий уровень кислот, при котором метановые бактерии погибают (на птицефабриках дополнительно используют реактор гидролиза)

·наличие большого количества мочи не способствует увеличению выхода биогаза, зато, сказывается на азотонасыщенности конечных твердых фракций; вода так же является лишь источником разжижения массы для ускорения реакции и ее (воды) объем на увеличении количества биогаза не отражается (достаточная влажность биосырья должна составлять 60-70%).

В принципе, процесс биореакции в закрытом пространстве (анаэробное сбраживание), со временем, начинается сам по себе, но существенно замедляется при низких температурах воздуха. Наиболее оптимальная температура для поддержания биологической активности метановых бактерий 30-400С. Для искусственного ускорения начала процесса применяют подогрев биомассы с помощью обычного обогревателя-змеевика до температуры +380С.

Метантек (биореактор) с целью поддержания температурного режима тщательно теплоизолируют.

Для увеличения скорости брожения и образования биогаза применяют механическоеперемешивание биомассы в биогазовой установке. Этот прием позволяет существенно сэкономить на объеме реактора, так как при отсутствии данной процедуры для получения того же объема биогаза потребуется реактор больших размеров.

На процесс брожения влияют и химические показатели, в частности, уровнь РН: если он высок, процесс существеннно замедляется либо вовсе останавливается.

Замедлению реакции сбраживания способствует наличие в биомассе сырья, содержащего антибиотики, консерванты и остатки моющих средств. Поэтому отходы жизнедеятельности человека малопригодны для биогазовых реакторов.

С целью ускорения биопроцесса в метантеках применяются стимулирующие добавки.

В примитивных биогазовых установках биогаз скапливается под тяжелой крышкой реактора, доводится до определенного давления и после отводится в систему газопотребления. В качестве газгольдера на подворье может служить и внешняя установка наподобие кузнечных мехов. Для поддержания необходимого давления в данной конструкции используется гнет.

.4.3 Типы биогазовых установок

По типу конструкции биогазовые установки бывают следующих типов:

без обогрева и без промешивания ферментируемой органики в реакторе;

с обогревом и промешиванием;

с обогревом, с промешиванием и с приборам, позволяющими контролировать и управлять процесс ферментации.

Биогазовая установка первого типа подходит для небольшого хозяйства и рассчитана на психрофильные бактерии: внутренний объем биореактора 1-10 м3 (переработка 50-200 кг навоза за сутки), минимальная комплектация, полученный биогаз не хранится - сразу поступает к потребляющим его бытовым приборам. Такую установку можно использовать только в южных районах, она рассчитана на внутреннюю температуру 5-20°С. Удаление ферментированной (сброженной) органики производится одновременно с загрузкой новой партии, отгрузка выполняется в емкость, объем которой должен быть равным или больше внутреннего объема биореактора. Содержимое емкости храниться в ней до введения в удобряемую почву.

Конструкция второго типа также рассчитана на небольшое хозяйство, ее производительность несколько выше биогазовых установок первого типа - в ее оснащение входит перемешивающее устройство с ручным или механическим приводом.

Третий тип биогазовых установок оснащен помимо промешивающего устройства принудительным обогревом биореактора, водогрейный котел при этом работает на альтернативном топливе, производимом биогазовой установкой. Выработкой метана в таких установках занимаются мезофильные и термофильные бактерии, в зависимости от интенсивности обогрева и уровня температуры в реакторе.

Последний тип биогазовых установок наиболее сложен и рассчитан на нескольких потребителей биогаза, в конструкцию установок вводятся электроконтактный манометр, предохранительный клапан, водогрейный котел, компрессор (пневматическое промешивание органики), ресивер, газгольдер, газовый редуктор, отвод для загрузки биогаза в транспорт. Эти установки работают непрерывно, допускают установку любого из трех температурных режимов благодаря точно настраиваемому обогреву, отбор биогаза выполняется в автоматическом режиме.

.4.4 Достоинства и недостатки биогаза

Биогазовая отрасль производит не один конечный продукт, а целый спектр дорогих и важных продуктов и без ущерба экологии:

Достоинства.

Тепло - от охлаждения генератора или от сжигания биогаза. Полученное тепло используют для обогрева помещений.

Электричество - из 1 м³ биогаза можно выработать около 2 кВт электроэнергии.

Биогаз - биогаз можно сжимать, накапливать, перекачивать излишки, продавать. Существуют модели автомобилей, которые используют в качестве топлива газ. Эти машины могут без дополнительной адаптации заправляться биометаном. Сейчас появляются первые заправочные биогазовые станции. В Швеции и Швейцарии биометан уже долгое время используется в городских автобусах (Volvo, Skania) и грузовых машинах.

Удобрения - удобрения, получаемые в виде переброженной массы являются экологически чистыми, жидкими удобрениями, лишенными нитритов, семян сорников, болезнетворной микрофлоры, специфических запахов. Расход таких удобрений составляет 1-5 т вместо 60 т необработанного навоза для обработки 1 га земли. В полученное удобрение могут добавляться фосфорные, калийные или другие удобрения, в зависимости от культуры, под которые будут использоваться удобрения. Испытания показывают увеличение урожайности в 2-4 раза.

Утилизация органических отходов - биогазовые установки могут устанавливаться как очистные сооружения на фермах, птицефабриках, спиртовых заводах, сахарных заводах, мясокомбинатах, что повышает санитарно-гигиеническое состояние этих предприятий.

Решение экологических проблем - производство биогаза позволяет предотвратить выбросы метана в атмосферу, снизить применение химических удобрений, сократить нагрузку на грунтовые воды.

Недостатки

Складирование биогаза в закрытых ёмкостях повышает требования к безопасности при использовании биогазовых установок.

Вывод

Агропромышленный комплекс России сегодня сталкивается с проблемой утилизации огромного количества биологических отходов - чаще всего они просто вывозятся с территорий ферм и складируются. Стало происходить заметное загрязнение прилегающих к фермам рельефа почв, водоемов, лесов и пастбищ. В итоге наносится серьезный экономический, экологический и социальный ущерб не только сельскохозяйственным землям, но и жителям близлежащих населенных пунктов.

Развитие биогазовой энергетики в сельскохозяйственных регионах России может стать не только возможным решением проблемы отходов, но и решением энергетических проблем сельского хозяйства. Кроме того, биогазовая энергетика - это еще и источник дешевых и доступных комплексных органических удобрений, которые образуются как субпродукт при производстве биогаза.

Заключение

Перспективы развития возобновляемых источников энергии и энергоэффективности в России

По оценкам, технический потенциал возобновляемых источников энергии составляет порядка 4,6 млрд. т у.т. в год, то есть в пять раз превышает объем потребления всех топливно-энергетических ресурсов России, а экономический потенциал определен в 270 млн. т у.т. в год, что немногим более 25 процентов от годового внутреннего потребления энергоресурсов в стране.

Важно отметить, что экономический потенциал возобновляемых источников энергии существенно увеличился, и будет продолжать расти в связи с подорожанием традиционного топлива.

Помимо неистощаемости и экологической чистоты ВИЭ, которые являются очевидными преимуществами этих видов энергии, существует ряд других причин обусловливающих необходимость их интенсивного использования.

Энергетическая стратегия России до 2020 года подчеркивает, что необходимость использования ВИЭ определяется их существенной ролью при решении следующих проблем:

обеспечение устойчивого тепло- и электроснабжения населения и производства в зонах децентрализованного энергоснабжения, в первую очередь в районах Крайнего Севера и приравненных к ним территориях;

обеспечение гарантированного минимума энергоснабжения населения и производства в зонах централизованного энергоснабжения, испытывающих дефицит энергии, предотвращение ущерба от аварийных и ограничительных отключений;

снижение экологической нагрузки от деятельности топливно-энергетического комплекса.

В настоящее время одними из ключевых факторов, сдерживающих развитие ВИЭ в России, являются дефицит инвестиций для реализации необходимых проектов, а также недостатки нормативно-правовой базы.

Литература

1.Лятхер, В.М. Развитие ветроэнергетики / В.М. Лятхер //Журнал «Малая энергетика». - 2006. - № 1-2 (4-5).

2.Шпильрайн Э.Э. Проблемы и перспективы возобновляемой энергии в России

Под выражением «возобновляемая энергия» либо регенеративная, то есть «зеленая энергия», подразумевается энергия источников, неисчерпаемая по человеческим меркам. В окружающей среде она представлена в широком спектре – солнечная, ветровая, водная, включая морские волны и течения, силы приливов и отливов океана, биомассы, геотермального тепла.


В последние годы широкое развитие получила альтернативная энергетика. Она представлена самыми разнообразными видами ВИЭ, которые постоянно возобновляются.

Под формулировкой «возобновляемые источники энергии» подразумеваются определенные формы энергии, вырабатываемые в естественных условиях, за счет происходящих на поверхности Земли природных процессов.

Условно они делятся на классы – возобновляемые и невозобновляемые:

  • к первому классу относятся источники, которые имеют неисчерпаемые источники энергии по человеческим меркам. Они постоянно пополняются естественным путем в ходе прохождения планетой определенного цикла;
  • второй класс представлен невозобновимыми природными ресурсами, в число которых входит газ, нефть, уголь, уран. Они относятся к энергоресурсам, сокращающимся с истечением времени без возобновления до прежних размеров.

Возобновляемый источник энергии предоставляют ресурсы, в число которых входит солнечный свет, водный поток, приливы и геотермальная теплота. Их возобновлению способствует круговорот воды в природе, цикличность его определяется временем года. Явление способствует постоянному восполнению энергии естественным путем.

ВИЭ подразделяется на группы – традиционные и нетрадиционные источники

В первую группу входит:

  • гидравлическая энергия воды, которая преобразуется в электрическую энергию. Каждая энергетическая станция вырабатывает ее посредством действия гидросилового оборудования, устанавливаемого на ней;
  • энергия биомассы, получаемая в ходе сжигания древесного угля, дров, торфа. Она применяется в основном для выработки тепла, подаваемого в отопительную систему жилых и нежилых зданий;
  • геотермальная энергия, являющаяся результатом естественного гниения и поглощения минералами, находящимися в недрах земли, солнечной энергии. В сущности, солнце есть неисчерпаемый источник энергии. Его тепловое излучение преобразовывается в электрическую энергию с применением фотоэлементов, тепловых машин.

Вторая группа состоит из энергии, которая существует в природе, окружающей человека:

  • солнечной;
  • ветровой;
  • морских волн и течений;
  • приливов и отливов океана;
  • биотоплива;
  • низкопотенциальной тепловой.

Принцип использования возобновимой энергии заключается в ее извлечении из постоянно происходящих в окружающей среде геологических процессов. Она предоставляется потребителю, который использует ее для решения технических задач и удовлетворения своих нужд.

Характеристики отдельных ВИЭ

Многие нетрадиционные и возобновляемые источники энергии без затруднений устанавливаются в жилых зданиях. Отдельные его виды можно применять в тяжелой и легкой промышленности, установив в производственных зданиях. В их число входят возобновляемые ресурсы, предоставляемые человеку самой природой.

Наибольшую популярность обрела энергия биомассы, являющаяся одним из видов «зеленой энергии». Она позволяет рационально использовать природные ресурсы планеты. Ресурсами являются отходы деревообрабатывающей и бумажной промышленности, отраслей сельского хозяйства, включая бытовой и строительный мусор, из которого вырабатывается естественным путем метан.

Воздушные массы атмосферы есть своего рода вечный неиссякаемый источник, потому что обладают огромной кинетической энергией. Они перемещаются под воздействием геологической деятельности ветра. Его сила преобразуется в электрическую энергию с помощью ветровых установок. Несмотря на довольно высокую стоимость, они успешно используются в районах со спокойным ландшафтом.

Еще один вечный источник энергии – Солнце. Солнечная энергетика является одним из направлений НВИЭ, основанной на непосредственном применении солнечного излучения для получения энергии. Она является бесплатным источником, который возобновляется. Помимо того, ее относят к категории «чистая энергетика», не производящей вредных отходов. Но солнечные установки применимы только в тех широтах планеты, где достаточно солнечного света для выработки электрической энергии.

Водный поток есть неиссякаемый источник, обладающий потенциальной и кинетической энергией. Она в ходе работы преобразуется в электрический ток. Ярким примером использования гидравлической энергии рек, воды является строительство малых и микро ГЭС, а также крупных ГЭС с большими мощностями.

Малые и микро ГЭС обрели популярность во многих странах, использующих энергию возобновляемых источников малых водотоков с целью выработки электрического тока. Нужно заметить, что в последние годы строительство крупных гидроэлектростанций сократилось до минимума.

«Зеленая энергетика» представлена энергией приливов и отливов океанов, морских волн и течений. Для их использования на берегу морей и океанов строятся приливные станции. Они преобразуют кинетическую энергию вращения Земли, возникающую за счет гравитационных сил Луны и Солнца, которые два раза в сутки изменяют уровень воды.

Достоинства и недостатки ВИЭ

Основное преимущество заключается в том, что возобновляемые ресурсы являются дешевым источником энергии. Это неиссякаемый источник энергии, который предоставлен в неограниченном количестве в окружающей среде, не являясь следствием целенаправленной деятельности человека.

Нужно заметить, что возобновляемые источники энергии имеют один недостаток. Он заключается в низкой степени концентрации, поэтому нельзя получаемую энергию передать на большие расстояния. Как правило, ВИЭ подлежит использованию вблизи потребителя.

Возобновляемая энергетика будущего

Учеными планеты ведутся дальнейшие разработки технологии водородного топлива, которая выделяет энергию при помощи синтеза атомов водорода в атом гелия. В будущем они намерены получать возобновляемые ресурсы не только с применением наземных конструкций, но и спутников Земли, чтобы использовать находящуюся в черных дырах космическую энергию.

Основные предпосылки для развития ВИЭ в Российской Федерации:

  • обеспечение энергетической безопасности страны;
  • сохранение окружающей среды, что позволит обеспечить экологическую безопасность;
  • достижение нового уровня на мировом рынке возобновляемой энергии, что обозначено в общем стратегическом плане развития государства;
  • претворение в жизнь мер, способствующих сохранить собственные возобновляемые ресурсы для будущих поколений;
  • увеличение размеров потребления сырья, которое используется в качестве топлива.

В перспективе использование возобновляемых источников энергии позволит человечеству восполнить топливный дефицит, удешевить добычу топлива, тепла и моторного масла. Кроме того, их использование очищает атмосферу, что, несомненно, поможет улучшить экологическую обстановку планеты.

И в заключение необходимо отметить, что возобновляемые источники электроэнергии обладают несомненным преимуществом. Оно заключается в их неисчерпаемости и экологической чистоте. Человек может использовать их без каких-либо опасений, потому что они не нарушают энергетический баланс планеты. К тому же возобновляемые ресурсы находятся вокруг него всюду.

Нетрадиционные возобновляемые источники энергии - это солнечное излучение, энергия ветра, энергия малых рек и водотоков, приливов, волн, энергия биомассы (дрова, бытовые и сельскохозяйственные отходы, отходы животноводства, птицеводства, лесозаготовок, лесной, деревообрабатывающей и целлюлозно-бумажной промышленности), геотермальная энергия, а также рассеянная тепловая энергия (тепло воздуха, воды океанов, морей и водоёмов).

Основное преимущество возобновляемых источников энергии их неисчерпаемость и экологическая чистота. Их использование не изменяет энергетический баланс планеты. Возобновляемые источники энергии играют значительную роль в решении трёх глобальных проблем, стоящих перед человечеством: энергетика, экология, продовольствие.

Указанные источники энергии имеют как положительные, так и отрицательные свойства. К положительным относятся повсеместная распространенность большинства их видов, экологическая чистота. Эксплуатационные затраты по использованию нетрадиционных источников не содержат топливной составляющей, так как энергия этих источников как бы бесплатная.

Отрицательные качества - это малая плотность потока (удельная мощность) и изменчивость во времени большинства НВИЭ. Первое обстоятельство заставляет создавать большие площади энергоустановок, «перехватывающие» поток используемой энергии (приемные поверхности солнечных установок, площадь ветроколеса, протяженные плотины приливных электростанций и т.п.). Это приводит к большой материалоемкости подобных устройств, а, следовательно, к увеличению удельных капиталовложений по сравнению с традиционными энергоустановками. Правда, повышенные капиталовложения впоследствии окупаются за счет низких эксплуатационных затрат, но на начальной стадии они чувствительно «бьют по карману» тех, кто хочет использовать НВИЭ. Больше неприятностей доставляет изменчивость во времени таких источников энергии, как солнечное излучение, ветер, приливы, сток малых рек, тепло окружающей среды. Если, например, изменение энергии приливов строго циклично, то процесс поступления солнечной энергии, хотя в целом и закономерен, содержит, тем не менее, значительный элемент случайности, связанный с погодными условиями. Еще более изменчива и непредсказуема энергия ветра. Зато геотермальные установки при неизменном дебите геотермального флюида в скважинах гарантируют постоянную выработку энергии (электрической или тепловой). Кроме того, стабильное производство энергии могут обеспечить установки, использующие биомассу, если они снабжаются требуемым количеством этого «энергетического сырья».

КОНСПЕКТ ЛЕКЦИЙ ДЛЯ СТУДЕНТОВ

ЗАОЧНОЙ ФОРМЫ ОБУЧЕНИЯ

Часть 2

НЕТРАДИЦИОННЫЕ И ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ

Состояние и перспективы использования нетрадиционных и

Возобновляемых источников энергии

Традиционные и нетрадиционные источники энергии

При существующем уровне научно-технического прогресса энергопотребление может быть покрыто лишь за счет использования органических топлив (уголь, нефть, газ), гидроэнергии и атомной энергии на основе тепловых нейтронов. Однако, по результатам многочисленных исследований органическое топливо к 2020 г. может удовлетворить запросы мировой энергетики только частично. Остальная часть энергопотребности может быть удовлетворена за счет других источников энергии – нетрадиционных и возобновляемых.

Возобновляемые источники энергии – это источники на основе постоянно существующих или периодически возникающих в окружающей среде потоков энергии. Возобновляемая энергия не является следствием целенаправленной деятельности человека, и это является ее отличительным признаком.

Невозобновляемые источники энергии – это природные запасы веществ и материалов, которые могут быть использованы человеком для производства энергии. Примером могут служить ядерное топливо, уголь, нефть, газ. Энергия невозобновляемых источников в отличие от возобновляемых находится в природе в связанном состоянии ивысвобождается в результате целенаправленных действий человека. В соответствии с резолюцией № 33/148 Генеральной Ассамблеи ООН(1978 г.) к нетрадиционным и возобновляемым источникам энергии относятся: солнечная, ветровая, геотермальная, энергия морских волн, приливов и океана, энергия биомассы, древесины, древесного угля, торфа, тяглового скота, сланцев, битуминозных песчаников и гидроэнергия больших и малых водотоков.



Запасы и динамика потребления энергоресурсов, политика России в области нетрадиционных и возобновляемых источников энергии

Потенциальные возможности нетрадиционных и возобновляемых источников энергии составляют, млрд. т.у.т в год:

Энергии Солнца – 2300;

Энергии ветра – 26,7;

Энергии биомассы – 10;

Тепла Земли – 40000;

Энергии малых рек – 360;

Энергии морей и океанов – 30;

Энергии вторичных низкопотенциальных источников тепла – 530.

Разведанные запасы местных месторождений угля, нефти и газа в России составляют 8,7 млрд. т.у.т., торфа – 10 млрд. т.у.т.

По имеющимся оценкам, технический потенциал ВИЭ в России составляет порядка 4,6 млрд. т у.т. в год, что превышает современный уровень энергопотребления России, составляющий около 1,2 млрд. т.у.т. в год. Экономический потенциал НВИЭ определен в 270 млн. т у.т. в год, что составляет около 25% от годового внутрироссийского потребления. В настоящее время экономический потенциал ВИЭ существенно увеличился в связи с подорожанием традиционного топлива и удешевлением оборудования возобновляемой энергетики за прошедшие годы.

Доля возобновляемой энергетики в производстве электроэнергии составила в 2002 г. около 0,5% от общего производства или 4,2 млрд. кВт·ч, а объем замещения органического топлива – около 1% от общего потребления первичной энергии или около 10 млн. т.у.т. в год. Положительным фактором для развития НВИЭ в России является начавшееся создание законодательной базы. Так, Законом «Об энергосбережении» в 1996 г. установлена правовая основа применения электрогенерирующих установок на НВИЭ, состоящая в праве независимых производителей этой электроэнергии на подсоединение к сетям энергоснабжающих организаций. Государственной Думой и Советом Федерации принят Закон «О государственной политике в сфере использования нетрадиционных возобновляемых источников энергии». Этот правовой акт устанавливает минимально допустимые в современных условиях экономические и организационные основы развития. Ведется разработка федеральной программы по использованию НВИЭ. Предполагается развивать производственные мощности оборудования нетрадиционной энергетики, на что будет выделено 1,315 млрд. рублей: 17% из федерального бюджета, остальные – из региональных и местных бюджетов.

В мае 2003 г. на рассмотрение правительства России вынесена «Энергетическая стратегия России на период до 2020г.». Одним из направлений данного документа является рассмотрение возможностей использования возобновляемых источников энергии.

Стратегическими целями использования возобновляемых источников энергии и местных видов топлива являются:

Сокращение потребления невозобновляемых топливно-энергетических ресурсов;

Снижение экологической нагрузки от топливно-энергетического комплекса;

Обеспечение децентрализованных потребителей и регионов с дальним и сезонным завозом топлива;

Снижение расходов на дальнепривозное топливо.

Необходимость развития возобновляемой энергетики определяется ее ролью в решении следующих проблем:

Обеспечение устойчивого тепло- и электроснабжения населения и производства в зонах децентрализованного энергоснабжения, в первую очередь в районах Крайнего Севера и приравненных к ним территориях. Объем завоза топлива в эти районы составляет около 7 млн. т нефтепродуктов и свыше 23 млн. т угля;

Обеспечение гарантированного минимума энергоснабжения населения и производства в зонах централизованного энергоснабжения, испытывающих дефицит энергии, предотвращение ущербов от аварийных и ограничительных отключений;

Снижение вредных выбросов от энергетических установок в городах и населенных пунктах со сложной экологической обстановкой, а также в местах массового отдыха населения.

В последнее время растет интерес к нетрадиционной энергетике у региональных АО-энерго и местных администраций.

Оценки показывают, что к 2010 г. может быть осуществлен ввод в действие около 1000 МВт электрических и 1200 МВт тепловых мощностей на базе возобновляемых источников энергии при соответствующей государственной поддержке.


СОЛНЕЧНАЯ ЭНЕРГЕТИКА.

СОЛНЕЧНЫЕ СИСТЕМЫ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОЭНЕРГИИ НА ОСНОВЕ

Крупнейшие солнечные электростанции

Кремер-Джанкшен-США-60.000кВт-1987г. - коллекторный

приёмник.

Деггет-США-45.000кВт-1985г. - коллекторный приёмник.

Борреро-Спрингс-США-15.000кВт-1985г. - фотогальванические преобразователи.

Солар-1-США-12.500кВт-1982г. - башенный преобразователь.

Корриза-Плейн-США-6.500кВт-1984г. - фотогальванические преобразователи.

Бет–Ха-аравах-Израиль-5.000кВт-1984г. - прудный приёмник.

Крымская-Украина-5.000кВт-1986г. - башенный приёмник.

БИОЭНЕРГЕТИКА. БИОМАССА КАК

ИСТОЧНИК ЭНЕРГИИ.

Биомасса – это органические соединения углерода. Энергия биомассы возникает в результате фотосинтеза под действием сол­нечного излучения, в процессе образования органических веществ и аккумулирования в них химической энергии.

Поток солнечной энергии, преобразуемый на Земле в результате фотосинтеза, составляет 250 кВт на человека, что эквивалентно 250000 крупных АЭС (по 6 млн. кВт каждая). Для сравнения – мощность электрических станций на планете составляет около 0,8кВт на человека.

В результате фотосинтеза образуются углеводы, содержащие углерод в соединениях с кислородом и водородом (например, глюкоза C 6 H 12 O 6 или сахароза C 12 H 22 O 11 ). В процессе соединения с кислородом при сгорании или гниении биомассы выделяется тепло. При сжигании биомассы в кислороде выход тепла составляет 16 МДж/кг или 4,4 кВт·час на 1 кг сухого веса.

Основными источниками биомассы являются:

· лесоразработки и отходы переработки древесины,

· сахарный тростник,

· зерновые и другие, продовольственные и технические культуры, продукция энергетического растениеводства,

· отходы животноводства (навоз),

· городские стоки, мусор (твердые бытовые отходы).

Переработка биомассы, связанная с извлечением энергии осуществляется термохимическими, биохимическими и агрохимическими способами. Термохимические способы – это прямое сжигание и пиролиз, биохимические – спиртовая ферментация и анаэробная переработка, агрохимические – экстракция топлив прямо от живых растений (например, получение каучука).

Сжигание биотоплива с получением тепла используется для приготовления пищи, обогрева жилищ, для сушки зерна, получения электроэнергии и т.д.

Приготовление пищи и сжигание топлива в традиционных, часто примитивных "устройствах" – неэффективно. Их К.П.Д. часто не превышает 5%. Велики потери из–за неполного сгорания, уноса тепла ветром, испарения из открытого котла и т. д. Процесс можно улучшить совершенствованием методов приготовления (например, паровые сковородки), уменьшением тепловых потерь (теплоизоляция печей, конструкция нагревателей), улучшением сгораемости топочных газов, применением простых и надёжных методов управления нагревателями. Применение древесного угля, принудительной подачи воздуха позволяет повысить эффективность плит и печей до 50%.

Другие направления по совершенствованию процесса сжигания биотоплива – это применение в качестве топлива печей биогаза, использование солнечных кухонь.

В этих процессах в качестве биотоплива широко применяется древесина. Древесину можно считать возобновляемым источником энергии только при условии, что скорость её прироста превышает скорость уничтожения.

Пиролиз (сухая перегонка) – это процессы нагрева или частичного сжигания органического сырья для получения производных топлив или химических соединений. Сырьём служит древесина, отходы биомассы, городской мусор, уголь. Продукты пиролиза – газы, смолы и масла, древесный уголь, зола. Разновидность пиролиза – газификация – предназначена для максимального получения газообразного топлива. Пиролиз осуществляется в газогенераторах. Схема газогенератора представлена на рисунке 3.1. Газогенератор состоит из следующих элементов:

1- печь, куда подается и частично сжигается при недостатке воздуха 2 перерабатываемая биомасса,

3- газопровод,

4- выход древесного угля,

5-биогаз от других печей,

6-сепаратор,

7-производные жидкости и летучие соединения (эфиры, фенолы, уксусная кислота, метанол и др.),

8-сушилка для сельскохозяйственной продукции,

9-обогрев помещений и приготовление пищи,

10-газгольдер,

11-крышка газгольдера,

12-трубопровод генераторного газа,

13-двигатель внутреннего сгорания,

14-электрический генератор.

Подаваемый материал предварительно сортируют для снижения негорючих примесей, подсушивают, измельчают. Температура в печи

Рис.3.1. Схема газогенератора

зависит от соотношения воздух – горючее. Проще всего управление установкой при температуре ниже 600ºС. При более высоких температурах - сложнее управление, но увеличивается содержание водорода в вырабатываемом газе.

Перегонка идёт в 4 стадии:

  • 100-120ºC подаваемый в газогенератор материал опускается вниз и освобождается от влаги,
  • 275ºC –отходящие газы в основном состоят из N 2 ,CO и CO 2 ; извлекается уксусная кислота и метанол,
  • 280-350ºC – начинается реакция выделения летучих химических веществ таких, как эфиры, фенолы и др.,
  • свыше 350 ºС – выделяются все типы летучих соединений, одновременно с образованием углекислого и угарного газа происходит увеличение образования водорода и метана CH 4 , часть углерода сохраняется в виде древесного угля, смешанного с золой.

Топливо, полученное при пиролизе более универсально, чем исходное, но уже имеет меньшую энергию сгорания. "Универсальность" топлива – это более широкий диапазон устройств – потребителей, меньшее загрязнение среды, удобство транспортировки, лучшая управляемость горением. В результате переработки получают твёрдый остаток, жидкости, газы.

Твёрдый остаток, древесный уголь, составляет 25-35% сухой биомассы. Он на 75-85% состоит из углерода, обладает теплотой сгорания 30 МДж/кг. Используется в качестве топлива с контролируемой чистотой, применяется в лаборатории, в промышленности, для выплавки стали (вместо кокса).

Жидкости – смолы, уксусная кислота, метанол, ацетон –30% от сухой биомассы. Они могут быть отделены или использованы вместе в качестве низкокачественного топлива с теплотой сгорания 22МДж/кг.

Газы – это древесный газ (синтетический газ, генераторный газ или водяной газ) – до 80% в газогенераторах. Газы состоят из азота, водорода, метана, углекислого газа и угарного газа. Они накапливаются в газгольдерах при давлении, близком к атмосферному (они не сжимаются). Используются в дизелях, карбюраторных двигателях.

Другие термохимические процессы: - гидрогенизация и каталитическая реакция между углеродом и окисью углерода.

Гидрогенизация – процесс нагревания измельчённой или переваренной биомассы до 600ºС при давлении около 50 атм (5 МПа). Получаемые при этом горючие газы метан и этан дают при сжигании 6 МДж на 1 кг сухого сырья.

Гидрогенизация с применением СО и пара аналогична предыдущему процессу, но нагревание производится в атмосфере СО до 400ºС. Извлекается синтетическая нефть, которую можно использовать как топливо.

Каталитическая реакция между Н 2 и СО при 330ºC и давлении 15 МПа даёт метиловый спирт (метанол)-ядовитую жидкость, которую можно использовать в качестве заменителя бензина с теплотой сгорания 23 МДж/кг.

Спиртовая ферментация (брожение) используется для получения этилового спирта (этанола) – С 2 Н 5 ОН. Этиловый (питьевой) спирт образуется из сахаров особыми микроорганизмами, дрожжами, в кислой среде. При концентрации спирта 10% микроорганизмы погибают. Поэтому дальнейшее повышение концентрации получается перегонкой (дистилляцией). В результате получают смесь-95%спирта + 5% воды. При брожении теряется 0,5% энергетического потенциала сахара. Необходимую для перегонки тепловую энергию получают, сжигая отходы биомассы.

Этиловый спирт получают из сахарного тростника, сахарной свёклы, крахмала. При получении спирта из сахарного тростника вначале отделяют сок для получения сахарозы. Оставшуюся патоку с содержанием сахара до 55% сбраживают и перерабатывают в спирт. Реакция превращения сахарозы в этанол в присутствии дрожжей:

При получении спирта из сахарной свёклы вначале получают сахар для сбраживания; далее процесс аналогичен.

Для получения спирта из растительного крахмала, например, из злаковых, его предварительно подвергают гидролизу на сахар.

Крупные молекулы крахмала разрушаются ферментами солода, содержащимися, например, в ячмене или при обработке его сильными кислотами при повышенном давлении. Важный вторичный продукт сбраживания - отходы используются в качестве корма для скота и удобрений.

Этиловый спирт – хорошее жидкое топливо. Он используется в чистом виде (95%) при небольшой переделке карбюратора или в смеси с бензином 1:10 (газохол). Газохол сейчас обычное топливо в Бразилии. Применяется оно и в США. При применении газохола увеличивается на 20% мощность двигателей, снижается загрязнение атмосферы по сравнению с применением тетраэтилсвинца.

Получение биогаза путём анаэробного сбраживания . В естественных условиях биомасса разлагается на элементарные соединения в условиях сырости, тепла, темноты в присутствии кислорода под действием бактерий, называемых аэробными. С участием этих бактерий углерод биомассы окисляется до двуокиси углерода (углекислого газа).

В замкнутых объёмах с недостатком кислорода развиваются анаэробные бактерии, которые способствуют созданию углекислого газа и метана. В анаэробных условиях происходит процесс «сбраживания». «Биогаз» - это смесь метана и углекислого газа. Его получают в биогазогенераторах . Реакция превращения сахарозы в метан в присутствии бактерий:

Реакция превращения целлюлозы в метан:

Эти реакции экзотермические. В процессе их протекания выделяется 1 МДж тепла на 1кг сухой массы сбраживаемого материала. Этого, однако, недостаточно для необходимого повышения температуры массы.

Анаэробное сбраживание и получение биогаза с последующим его использованием в качестве качественного топлива выгоднее, чем простое высушивание и сжигание исходного материала, так как только удаление 95% влаги при сушке требует до 40 МДж тепла на 1кг сухого остатка. Теплота сгорания сухого навоза составляет 12…15 МДж/кг. Кроме того, после анаэробной переработки навоз может быть использован как удобрение.

Получение биогаза – экономически выгодно, если биогазогенератор работает на переработке существующего потока отходов - (стоки канализационных систем, свиноферм и др.) без их специального сбора, например, в замкнутом экологическом цикле агропромышленного комплекса.

Сбраживание в биогазогенераторе может происходить при температуре 20…30ºС с участием псикрофилических бактерий с циклом сбраживания 14 суток. При подогреве до 35ºС в процессе участвуют мезофилические бактерии и процесс ускоряется до 7 суток. Для подогрева используется часть биогаза, получаемого в биогазогенераторе. При необходимости ускорения разложения биомассы без увеличения выхода биогаза массу подогревают до 55ºС, что соответствует термофилическому уровню анаэробных бактерий. В любом случае необходимо поддерживать в биогазогенераторе стабильные условия по температуре и подаче биомассы для выведения подходящих для данных условий популяций бактерий.. В тропиках сбраживание ведётся при 20-30ºС без дополнительного подогрева, с временным интервалом 14 дней. В средней полосе для сбраживания необходим дополнительный подогрев, например, с использованием части получаемого биогаза. При повышении температуры процесса до 35ºС, скорость реакции в биогазогенераторе удваивается.

Процесс сбраживания идет в три стадии, которые обеспечиваются собственными для каждой стадии бактериями:

1 стадия - расщепление нерастворимых материалов (целлюлоза, жиры, полисахариды) на углеводы и жирные кислоты в течение 1 суток при 20…25ºС,

2 стадия - образование уксусной и др. кислот в течение 1 суток,

3 стадия - образование метана, полное сбраживание массы с получением биогаза (70% метана и 30% углекислого газа) с примесью водорода и сероводорода в течение 14 суток.

Технологическая и электрическая схема биогазогенератора для условий умеренного климата для утилизации навоза животноводческого комплекса, использующего электроэнергию в качестве основного источника энергии представлена на рисунке 3.2. Здесь:

1- приемная емкость с мешалкой, куда поступает очищенный от соломы и других неактивных материалов навоз,

2- мешалка,

4- бак (metan tank) с мешалкой,

5- мешалка,

6- насос для перекачки навоза в баке с подогревом в зимнее время с помощью газового нагревателя,

7- газовый нагреватель,

8- насос для перекачки отработанного навоза в выходную емкость для отходов,

9- выходная емкость,

10- компрессор для перекачки получаемого биогаза в газгольдер,

11- водяной газгольдер,

12- двигатель внутреннего сгорания,

13- электрогенератор,

14- шины трансформаторной подстанции предприятия,

15- коммутирующие аппараты подстанции,

16- главный трансформатор подстанции предприятия,

17- приводные электродвигатели вытяжной и приточной вентиляции с калориферами для обогрева помещений, привода механизмов кормораздачи, скребков, а также лампы освещения.

Навоз помещают в накопитель, где он отделяется от несбраживаемых материалов. Далее масса медленно проходит через ёмкость, врытую в землю, где происходит сбраживание, а затем отработанная масса поступает в бак для отработанной массы, которая используется для удобрения. Давление газа в газгольдере создаётся тяжёлым металлическим газгольдером.

Теплота сгорания некоторых видов топлива :

  • бензин 47 МДж/кг или 34·10 - ³ МДж/л;
  • этиловый спирт С 2 Н 5 ОН 30 МДж/кг или 25·10 - ³ МДж/л;
  • метан СН 4 55 МДж/кг или 38·10 - ³ МДж/л;
  • метанол СН 3 ОН 23 МДж/кг или 18·10 - ³ МДж/л;
  • биогаз (50% СН 4 и 50% СО 2) 28 МДж/кг или 20·10 - ³ МДж/л;
  • генераторный газ 5-10 МДж/кг или (4-8)·10 - ³ МДж/л;
  • древесный уголь (кусковой) 32 МДж/кг;
  • коровий навоз 12 МДж/кг;
  • древесина сухая 16 МДж/кг.

Рис.4.2. Схема биогазогенератора.

ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ.

Внутренняя структура Земли, рис.4.1 содержит: 1- раскалённое внутреннее ядро, 2- наружное ядро, 3- мантию и 4- тонкую толщиной 30 км кору Земли.

Земная кора получает тепло от раскалённого до 4000ºС ядра, где происходят ядерные и химические реакции с выделением огромного количества тепла. Разность температур между внешней и внутренней поверхностями коры около 1000ºС. Кора состоит из твёрдых пород и имеет невысокую теплопроводность. Геотермальный поток 5 через неё в среднем 0,06Вт/м² при температурном градиенте 30ºС/км. Выход тепла через твёрдые породы суши и океанского дна происходит за счёт теплопроводности (геотермальное тепло) и в виде конвективных потоков расплавленной магмы или горячей воды.

В районах с повышенными градиентами температуры эти потоки составляют 10-20Вт/м² и там могут быть созданы геотермальные энергетические (электрические) станции (Гео ТЭС).

Температурный градиент повышается в зонах с плохо проводящими тепло или насыщенными водой породами. Особенно высокое тепловое взаимодействие мантии с корой наблюдается по границам материковых платформ. В этих районах велик потенциал геотермальной энергии. Градиент температуры достигает 100ºС/км. Это районы с повышенной сейсмичностью, с вулканами, гейзерами, горячими ключами. Такими районами являются: Камчатка в России, Калифорния (Сакраменто) в США, а также зоны в Новой Зеландии, Италии, Мексике, Японии, Филиппинах, Сальвадоре, Исландии и других странах.

Сведения о геотермальных структурах получают при геологической съёмке, проходке шахт, скважин (при глубоком бурении –6 км и более). Технология бурения скважин до 15 км остаётся такой же как и до 6 км, поэтому при строительстве Гео ТЭС эта проблема может считаться решённой.

Геотермальные районы подразделяют на 3 класса:

гипертермальные с температурным градиентом более 80ºС/км - расположены в зонах вблизи границ континентальных платформ –Тоскана в Италии;

полутермальные –40¸80ºС/км – расположены вдали от границ платформ, но связаны с аномалиями, например, глубокими естественными водоносными пластами или раздробленными сухими породами – район Парижа;

нормальные – менее 40ºС/км, где тепловые потоки составляют

Рис.4.1. Внутренняя структура Земли и поток геотермальной энергии

Рис.4.2. Использование потока геотермальной энергии

0,06 Вт/м². В этих районах извлечение геотермального тепла – пока нецелесообразно.

Тепло получается благодаря: (1)естественной гидротермальной циркуляции, при которой вода проникает в глубокие слои, нагревается, превращается в сухой пар, пароводяную смесь или просто нагревается и образует гейзеры, горячие источники, (2)искусственному перегреву, связанному с охлаждением застывающей лавы, (3)охлаждению сухих скальных пород. Сухие скальные породы в течении миллионов лет накапливали тепло. Отбор тепла от них возможен прокачкой воды через искусственно созданные разрывы, скважины и др.

Созданные Гео ТЭС работают на естественной гидротермальной циркуляции, а также на искусственном перегреве за счёт извлечения тепла из сухих скальных пород.

Геотермальная энергия обладает низкими термодинамическими свойствами. Это энергия низкого качества(35%) и низкой плотности(0,06Вт/м²), с низкой температурой теплоносителя. Наилучший способ её использования – комбинированное применение для обогрева и выработки электроэнергии. При потребности в тепле с температурой до 100ºС целесообразно её использовать только для обогрева, если температура теплоносителя ниже 150ºС. При температуре теплоносителя 300ºС и выше целесообразно её комбинированное использование. Тепло целесообразно использовать вблизи места добычи, для обогрева жилищ и промышленных зданий, особенно в зонах холодного климата. Такие геотермальные системы используются, например, в Исландии. Тепло также используется для обогрева теплиц, сушки пищевых продуктов и т.д. Применение геотермальной энергии определяется капитальными затратами на сооружение скважин. Их стоимость экспоненциально возрастает с увеличением глубины бурения.

Общее количество тепла, извлекаемого от теплоносителя, может быть увеличено за счёт повторной закачки в скважины, тем более, что нежелательно оставлять на поверхности эти сильно минерализованные воды по экологическим причинам. Геотермальные энергостанции располагаются в гипертермальных районах, рис.4.2, вблизи естественных гейзеров и пароводяных источников 1 с температурой воды и пара 200…280ºС и используют естественные выходы тепла 2 (энергостанция 3) и специально пробуренные скважины 4 (энергостанция 5).

Схема извлечения тепла из сухих горных пород включает нагнетательную 1 и водозаборную 2 скважины, рис.4.3.. Скала на глубине 5-7 км дробиться гидровзрывом с помощью холодной воды, нагнетаемой под давлением в скважину. После предварительного дробления пород вода нагнетается через нагнетательную скважину, фильтруется через скальные породы на глубине 5 км при tº=250ºС, тёплая вода возвращается на поверхность через водозаборную скважину.

Рис.4.3. Схема извлечения тепла из сухих горных пород

Рис.4.4.Использование геотермальной энергии для производства электроэнергии в тепловом двигателе с одним рабочим телом (с

водой или фреоном)

Использование геотермальной энергии для производства электроэнергии может быть произведено по различным схемам:

· Турбинный цикл с одним рабочим телом с водой или хладоном показан на рис.4.4, где: П- теплообменник (парогенератор), где геотермальное тепло передается хладону, нагревает и испаряет его, Т- турбина, Г-генератор, К- конденсатор, Н- насос. При использовании низкотемпературного геотермального источника для приведения в действие турбины вместо воды применяют жидкости с более низкой температурой парообразования, например, хладон или аммиак. Особые трудности возникают с теплообменниками из–за высокой концентрации химических веществ в воде из скважин.

· Схема прямого парового цикла , рис.4.5, содержит: пароводяной сепаратор- ПС, редуктор- Р, Т- турбину, Г-генератор, К- конденсатор, Н- насос. Вода с паром от геотермального источника подается в пароводяной сепаратор, где пар отделяется от воды и поступает в турбину. Вода возвращается под землю. Отработанный в турбине пар конденсируется, и конденсат также закачивается под землю.

Крупнейшие геотермальные электростанции :

ЭНЕРГИЯ ОКЕАНОВ.

Энергия океанов – это энергия волн, энергия приливов и тепловая энергия воды.

Энергия волн.

Мощность, переносимая волнами на глубокой воде, пропорциональна квадрату их амплитуды и периоду. Длиннопериодные волны (Т≈10 с) с большой амплитудой (А≈2 м) позволяют снимать с единицы длины гребня до 50 кВт/м.

Проекты использования энергии волн разрабатываются в Японии, Великобритании, в Скандинавских странах. Разрабатываются объекты с единичными модулями 1000 кВт с длиной вдоль фронта волны около 50 м. Такие установки могут быть конкурентоспособны с дизель–генераторами при электроснабжении удаленных посёлков на островах.

Сложности создания волновых энергоустановок обусловлены нерегулярностью волн по амплитуде, частоте, направлению, возможностью 100-кратных перегрузок при штормах и ураганах, расположением на глубокой воде, вдали от берега, сложностью согласования низкой частоты волн (0,1Гц) и высокой частоты электрического генератора (50 Гц).

Волновая энергоустановка 1, использующая колеблющийся водяной столб, рис.5.1, размещается на грунте. Она состоит из нижней вертикальной камеры 2, сообщающейся с морем и имеющей два отверстия с клапанами 4 и 7, и воздушной камеры 3 с двумя отверстиями с клапанами 5 и 6, с диффузором и турбиной 8,соединенной валом с электрическим генератором 9.

При набегании волны на частично погруженную полость, открытую под водой, столб воды в полости колеблется, и изменяет давление воздуха над жидкостью. С помощью клапанов воздушный поток регулируется так, что проходит через турбину в одном направлении. При набегании волны воздушный поток из нижней камеры под давлением проходит через клапан 4 в верхнюю камеру, через диффузор, приводит во вращение турбину и выходит наружу через клапан 5. При сбегании волны клапаны 4 и 5 закрыты. Под действием разрежения, возникающего в нижней камере, воздух засасывается снаружи в верхнюю камеру, проходит через диффузор в прежнем направлении и через клапан 7 проходит в нижнюю камеру. На этом принципе действуют энергоустановки, внедрённые в Японии, Великобритании, Норвегии (500 кВт).

Рис.5.1. Волновая энергоустановка

Возможны другие конструкции энергоустановок, например, подводное устройство, которое состоит из плавучего корпуса – поплавка, закреплённого под водой на опорах, установленных на

грунте. Под воздействием подповерхностного движения вод он совершает колебательные движения, которые преобразуются в движение поршневого насоса. Жидкость подаётся на генераторную станцию по трубопроводам.

Энергия приливов .

Приливные колебания уровня в океанах происходят периодически: суточные с периодом 24 часа 50 минут и полусуточные с периодом 12 часов 25 минут. Разность уровней самого высокого и самого низкого – это высота прилива. Она колеблется от 0,5 до 10-11 метров. Во время приливов и отливов возникают приливные течения, скорость которых в проливах между островами достигает 4-5 м/с. Причиной возникновения приливов является гравитационное взаимодействие Земли 1 с Луной 2 и Солнцем, рис.5.2. Гравитационные же силы удерживают воду на поверхности вращающейся Земли. Плоскость вращения Луны относительно Земли имеет наклон относительно плоскости эклектики (в которой Земля вращается относительно Солнца) и дважды в течение солнечных суток Луна проходит через экваториальную плоскость.

Рис.5.2. Возникновение приливов

Если Луна находится в экваториальной плоскости Земли, океанские воды втягиваются в пики 3 в точках – максимально приближенной и удаленной от Луны. В ближайшей к луне точке действует увеличенная сила лунного притяжения и уменьшенная центробежная сила, в наиболее удаленной точке- уменьшенная сила лунного притяжения и увеличенная центробежная сила.

Это полусуточные приливы. Они наблюдаются в любой точке два раза в сутки. Обычно Луна не находится в экваториальной плоскости Земли. Поэтому приливы в этой точке возникают также 1 раз в сутки. Это суточные приливы.

На величину возникающих приливов оказывает влияние меняющееся расстояние между Луной и Землёй, совпадение или несовпадение Лунных и Солнечных приливов, место, в котором наблюдается прилив, открытый океан или вблизи побережья, в устьях рек и прочие.

Приливная электростанция (ПЭС) может быть расположена непосредственно в приливном течении, рис.5.3.

Рис.5.3. Приливная энергоустановка

Другой вариант расположения ПЭС – бассейн, отделённый от океана дамбой или плотиной. Во время прилива вода в бассейне поднимается на максимальную высоту. При отливе масса воды пропускается через турбину, вырабатывая электроэнергию.

Развитие приливной энергетики возможно в местах с большими высотами приливов и большими потенциалами приливной энергии, например, на побережье Северной Америки (9…11м), в западной Африке 5м, на побережье Белого, Баренцева морей, во Франции (Бретань), Великобритании (Северн), Ирландии, Австралии. Приливные энергоустановки характеризуются большими капитальными затратами. Капитальные затраты на строительство ПЭС могут быть снижены решением комплексных хозяйственных задач: одновременным строительством дорог вдоль дамб, улучшением условий судоходства, снижением расхода дорогого дизельного топлива и так далее.

Крупнейшие приливные электростанции:

Ла Ранс – Франция – 240.000 кВт – 24 турбины – 1967г.

Аннаполис – Канада – 20.000 кВт – 1 турбина – 1984г.

Джянгксия – Китай – 3.900 кВт – 6 турбин – 1986г.

Байсхакоу – Китай – 640 кВт – 4 турбины – 1985г.

Кислогубская – Россия – 400 кВт – 1 турбина – 1968г.

ГИДРОЭНЕРГЕТИКА

Гидроэнергетика использует энергию падающей воды. Эта энергия преобразуется в механическую энергию в гидротурбине и в электрическую в гидрогенераторе. Мощность, отдаваемая падающей водой турбине:

(6.1)

где:r=10 3 кг/м 3 - плотность воды,

g=9,81 м/с 2 - ускорение силы тяжести,

Расход воды, м 3 /с,

Высота падения воды, м.

Потери при этом преобразовании невелики и затрачиваются только на удаление воды из турбины. К.П.Д. современных гидротурбин достигает 90%.

При определении гидроэнергетического потенциала местности, района, области годовая выработка электроэнергии ГЭС может составить

(6.2)

(6.3)

Условиями целесообразности использования гидроэнергии в данной местности являются:

  • достаточно большой годовой сток и перепад высот не менее 250…300м; при меньшем перепаде высот нерационально возрастают площади залива территории при создании водохранилищ,
  • годовой уровень осадков не менее 0,4 м,
  • равномерное распределением осадков в течение года,

подходящий рельеф местности и наличие мест для водохранилищ.

Гидротурбины разделяются на реактивные и активные.

Рабочее колесо реактивной турбины полностью погружено в воду и вращается за счет разности давлений до и после колеса, рис.6.1. Здесь: 1- русло реки, 2- естественный водопад, 3- решетка, 4- водовод (канал), 5- направляющий аппарат, 6- гидротурбина, 7- гидрогенератор в здании ГЭС.

Рис.6.1. Деривационная гидроэлектростанция с реактивной гидротурбиной вблизи естественного водопада.

Реактивная турбина может работать при реверсировании ге

К категории нетрадиционных возобновляемых источников энергии (НВИЭ), которые также часто называют альтернативными, принято относить несколько не получивших пока широкого распространения источников, обеспечивающих постоянное возобновление энергии за счет естественных процессов. Это источники, связанные с естественными процессами в литосфере (геотермальная энергия), в гидросфере (разные виды энергии Мирового океана), в атмосфере (энергия ветра), в биосфере (энергия биомассы) и в космическом пространстве (солнечная энергия).

Среди несомненных достоинств всех видов альтернативных источников энергии обычно отмечают их практическую неисчерпаемость и отсутствие каких-либо вредных воздействий на окружающую среду. Хотя второй из этих тезисов ныне оспаривают не только отдельные географы и экологи, но и эксперты ООН, никто не отрицает, что они могли бы сыграть определенную роль в укреплении энергетической и экологической безопасности многих стран. Действительно, использование НВИЭ способствовало бы сбережению органических видов топлива и соответственно уменьшению поступления продуктов их сгорания в атмосферу, снижению объемов перевозок этих видов топлива (а следовательно, и транспортных расходов), рационализации топливно-энергетических балансов и др.

Однако на пути широкого использования НВИЭ существует и немало серьезных препятствий, прежде всего технико-экономического характера. Это крайнее непостоянство большинства таких источников энергии во времени и в пространстве, малая плотность потоков энергии, с чем непосредственно связаны высокая капиталоемкость строительства и себестоимость энергии, длительные сроки строительства, значительная степень разного рода рисков.

В целом баланс положительных и отрицательных факторов использования НВИЭ пока можно охарактеризовать как складывающийся с перевесом факторов второй группы. Показательно, что наибольший интерес к ним стали проявлять в период мирового энергетического кризиса 1970-х гг., когда цены на традиционные энергоносители резко поднялись. В 1981 г. в Найроби (Кения) состоялась специальная конференция ООН, на которой была принята мировая «Программа действий по использованию новых и возобновляемых источников энергии». Однако после того, как традиционные энергоносители снова подешевели, интерес к альтернативным значительно снизился. В настоящее время их доля в мировом топливно-энергетическом балансе не превышает 1 %. Только в очень немногих странах и регионах, где отсутствуют запасы органического топлива и ресурсы гидроэнергии, но имеются благоприятные условия для использования альтернативных источников энергии, доля их в таких балансах оказывается значительной. В остальных же странах и регионах они имеют сугубо местное значение, снабжая энергией мелких и территориально рассредоточенных потребителей.

Однако нельзя не учитывать и того, что за последние два десятилетия в мире был достигнут значительный прогресс в повышении экономичности использования нетрадиционных источников энергии. Так, существенно снизились затраты на строительство ветровых и солнечных электростанций, что повысило их конкурентоспособность даже в сравнении с обычными ТЭС, работающими на органическом топливе. В свою очередь, это стало возможным в результате разработки принципиально новых технологий использования альтернативных источников энергии. Большое значение имеет также проводимая в США, Японии, Китае, Индии, во многих странах Западной Европы политика стимулирования их использования. Она обычно предусматривает налоговые льготы на разработку оборудования, предоставление кредитов – государственных и частных, принятие специальных законодательных актов. Исходя из этого и прогнозы дальнейшего использования этих источников энергии относительно оптимистичны. Так, по оценке Мирового энергетического совета (МИРЭС), в 2020 г. даже при минимальном варианте прогноза они могут обеспечить выработку 540 млн тут (в нефтяном эквиваленте) и составить 3–4 % мирового потребления топлива и энергии. А при максимальном варианте эти показатели возрастут предположительно до 1350 млн тут и8-12 %.

Источники геотермальной энергии отличаются не только неисчерпаемостью, но и довольно широким распространением: ныне они известны более чем в 60 странах мира. Но сам характер использования этих источников во многом зависит от их природных особенностей.

Низко– и среднетемпературные «подземные котлы» (с температурой до 150 °C) используют в основном для обогрева и теплоснабжения: природную горячую воду по трубам подают к жилым, производственным и общественным зданиям, теплицам, оранжереям, плавательным бассейнам, водолечебницам и т. д. Термальные воды используют для прямого обогрева во многих странах зарубежной Европы (Франция, Италия, Венгрия, Румыния), Азии, (Япония, Китай), Америки (США, страны Центральной Америки), Океании (Новая Зеландия). Но, пожалуй, наиболее ярким примером такого рода может служить Исландия.

В этой стране, практически лишенной других источников энергии, пресные термальные воды начали осваивать еще в конце 1920-х гг., но первая в мире крупная система геотермального водоснабжения вступила тут в строй только в конце 1950-х гг. Горячую воду из почти ста глубоких скважин по специальной теплотрассе подают в столицу страны – Рейкьявик и соседние поселения. Ею отапливают жилые и общественные здания, промышленные предприятия, оранжереи и в особенности теплицы, полностью обеспечивающие потребности жителей в огурцах и помидорах и снабжающие их яблоками, дынями и даже бананами.

Высокотемпературные (более 150 °C) термальные источники, содержащие сухой или влажный пар, выгоднее всего использовать для приведения в движение турбин геотермальных электростанций (ГеоТЭС).

Первая промышленная ГеоТЭС была построена в итальянской провинции Тоскана, в местечке Лардерелло около Пизы, в 1913 г. Затем в Италии стали работать и другие небольшие ГеоТЭС. В 1920-х гг. начали строить ГеоТЭС в Японии, в 1950-х – в Новой Зеландии и Мексике, в 1960-х – в США, в 1970-х – в Китае, Индонезии, Турции, Кении, Сальвадоре, на Филиппинах, в 1980-х – в ряде стран Центральной Америки, в 1990-х – в Австралии. Соответственно и суммарная мощность ГеоТЭС стран мира возрастала следующим образом (в тыс. кВт): в 1950 г. – 240, в 1960 г. – 370, в 1970 г. – 715, в 1980 г. – 2400, в 1990 г. – 8770. Число стран, имеющих ГеоТЭС, уже превышает 20.

До недавнего времени внеконкурентное первое место по количеству (около 20) и мощности (более 3,2 млн кВт) ГеоТЭС занимали США. В этой стране геотермальные электростанции работают в штатах Юта, Гавайи, но большинство их находится в северной части Калифорнии, в Долине гейзеров. Однако с начала 1990-х гг. разработки геотермальных источников в США явно замедлились, почти прекратилась практика предоставления разного рода льгот производителям и потребителям геотермальной энергии. К тому же ГеоТЭС в Долине гейзеров пострадали от падения внутреннего давления и уменьшения поступления горячего пара. Так что в последнее время строительство новых ГеоТЭС в стране не происходило.

Вторым мировым лидером в области геотермальной электроэнергетики стали Филиппины, которые уже в 1995 г. имели несколько ГеоТЭС мощностью 2,2 млн кВт и ныне, по-видимому, по этому показателю уже обогнали США. Первая ГеоТЭС была сооружена здесь в 1977 г. (с помощью иностранного капитала). Согласно расчетам, к 2000 г. геотермальные электростанции этой страны должны были удовлетворять до 30 % ее потребности в электроэнергии. Далее по размерам производства электроэнергии на ГеоТЭС следуют Мексика, Италия и Япония.

Среди ученых нет единого мнения о перспективах развития геотермальной электроэнергетики. Одни считают эти перспективы довольно ограниченными, исходя из того, что на Земле (в том числе и при помощи космических снимков) разведано лишь около ста «горячих точек» конвективного выхода глубинного тепла Земли. Другие, напротив, оценивают эти перспективы весьма высоко. Можно добавить, что главным координатором работ в этой области служит Международная геотермальная ассоциация, периодически созывающая свои симпозиумы.

Использование энергии ветра началось, можно сказать, на самом раннем этапе человеческой истории.

«Ветер служил человечеству с той поры, – пишут американские экологи супруги Ревелль, – как первобытные люди впервые подняли парус над хрупким челноком, выдолбленным из цельного бревна. Преобладающие западные ветры были той силой, которая обеспечила открытие Нового Света и несла испанскую армаду от победы к победе. Пассаты надували паруса больших клиперов и помогли открыть Индию и Китай для торговли с Западом». Они же упоминают о том, что древние персы использовали силу ветра для размола зерна, и о том, что в средневековой Голландии ветряные мельницы служили не только для размола зерна, но и для откачки воды с польдеров. В середине XIX в. в США был изобретен многолопастной ветряк, использовавшийся для подъема воды из колодцев. Но получать при помощи ветра электроэнергию первыми научились датчане в 1890 г.

Технологические основы современной ветроэнергетики разработаны уже достаточно хорошо.

Пока наибольшее распространение получили малые и средние ветроэнергетические установки (ВЭУ) мощностью от 100 до 500 кВт. Но уже началось серийное производство ветротурбин мощностью от 500 до 1000 кВт. Их ротор имеет диаметр от 35 до 80 м, а высота башни достигает 90 м. Малые ветроустановки обычно используют для автономной работы (например, на отдельной ферме), а более крупные чаще концентрируют на одной площадке, создавая так называемую ветровую ферму. Самым крупным производителем ветродвигателей была и остается Дания, за которой следуют Германия, США, Япония, Великобритания, Нидерланды.

В последние два десятилетия ветроэнергетика развивалась более высокими темпами, чем энергетика, использующая остальные виды НВИЭ. Отсюда и значительный рост мощностей ветроустановок в мире. В 1981 г., когда началось их применение в американском штате Калифорния, общая их мощность составляла всего 15 тыс. кВт. К 1985 г. она возросла до 1,1 млн, к 1990 г. – до 2 млн, к 1995 г. – до 5 млн (все такие установки давали тогда 8 млрд кВт ч электроэнергии), а к 2000 г. – до 13 млн кВт. Согласно некоторым прогнозам, в 2006 г. она может достигнуть 36 млн кВт.

География мировой ветроэнергетики претерпела довольно существенные изменения. До середины 1990-х гг. по суммарной мощности ВЭУ (или ветроэлектростанций – ВЭС) первое место занимали США: в 1985 г. на эту страну приходилось 95 %, да и в 1994 г. – 48 % всех мировых мощностей. Почти все они сконцентрированы здесь в штате Калифорния, где находятся и самые крупные в стране отдельные ветро-электростанции и самые большие «ветровые фермы» (на одной из них размещено около 1000 ВЭУ, так что ее суммарная мощность превышает 100 тыс. кВт). Кроме того, такие установки работают в штатах Нью-Мексико, Гавайи, Род-Айленд, ведется или намечается их сооружение и в нескольких других штатах.

Однако во второй половине 1990-х гг. мировое лидерство в ветроэнергетике перешло к Западной Европе, где уже в 1996 г. было сосредоточено 55 % мировых мощностей ветроэнергетических установок. Ветроэлектростанции уже работают в 14 странах Западной Европы, причем в первую их пятерку входят Германия, Дания, Нидерланды, Великобритания и Испания, но определяющая роль принадлежит двум первым из них.

До начала 1990-х гг. европейское первенство удерживала страна – родоначальник ветроэнергетики– Дания. Тем не менее во второй половине 1990-х гг. Дания уступила его Германии, мощности ветроустановок которой в 1999 г. достигли 4 млн кВт, а выработка электроэнергии на них – б млрд кВт ч. К тому же в отличие от Дании, где преобладают мелкие автономно работающие установки, для Германии более характерны крупные «ветровые фермы». Больше всего их на самом «продуваемом» участке ее территории – побережье Северного моря в пределах земли Шлезвиг-Гольштейн. В 2005 г. здесь была введена в строй крупнейшая в мире ВЭУ, которая ежегодно производит 17 млн квт-ч электроэнергии.

В целом еще в середине 1990-х гг. ветроэнергетические установки Западной Европы обеспечивали бытовые потребности в электроэнергии примерно 3 млн человек. В рамках ЕС была поставлена задача к 2005 г. увеличить долю ветроэнергетики в производстве электроэнергии до 2 % (это позволит закрыть угольные ТЭС мощностью 7 млн кВт), а к 2030 г. – до 30 %.

Из других стран мира, имеющих перспективы для развития ветроэнергетики, можно назвать Индию, Китай и Японию в Азии, Канаду в Северной Америке, Мексику, Бразилию, Аргентину, Коста-Рику в Латинской Америке, Австралию. Но настоящий рывок в этой сфере в 1990-е гг. предприняла только Индия, которая, с одной стороны, испытывает дефицит традиционных видов топлива, а с другой – обладает значительным потенциалом ветроэнергетических ресурсов, обусловленным муссонной циркуляцией воздушных масс в сочетании с особенностями строения рельефа страны. В результате осуществления большой государственной программы строительства ВЭУ, рассчитанной на привлечение иностранного капитала, Индия по их суммарной мощности уже обогнала Данию и вышла на третье место в мире после США и Германии.

Хотя солнечную энергию использовали для обогрева домов еще в Древней Греции, зарождение современной гелиоэнергетики произошло только в XIX в., когда был сконструирован солнечный коллектор для подогрева воды, а становление ее – уже в XX в. Наиболее благоприятные условия для широкого использования солнечной энергии существуют на территориях, расположенных южнее 50-й параллели. Что же касается самого ее преобразования в тепловую или электрическую энергию, то его можно осуществлять при помощи трех технико-технологических способов.

Первый способ, который получил наиболее широкое распространение, – это теплоснабжение с использованием солнечных коллекторов-водонагревателей, которые неподвижно устанавливают на крышах домов под определенным углом к горизонту. Они обеспечивают нагрев теплоносителя (вода, воздух, антифриз) на 40–50 °C по сравнению с температурой окружающей среды. Их применяют также для кондиционирования воздуха, сушки сельскохозяйственных продуктов, опреснения морской воды и др. Больше всего таких установок теплоснабжения имеют США и Япония, но самая высокая плотность их из расчета на душу населения достигнута в Израиле и на Кипре. Так, в Израиле 800 тыс. солнечных коллекторов обеспечивают горячей водой 70 % жителей этой страны. Солнечные коллекторы применяются также в Китае, Индии, ряде стран Африки (преимущественно для привода в действие насосных установок) и Латинской Америки.

Второй способ заключается в преобразовании солнечной энергии уже не в тепловую, а в электрическую, причем «напрямую» – при помощи фотоэлектрических установок (солнечных батарей) на кремниевой основе – наподобие тех, которые устанавливают на космических аппаратах. Первая такая электростанция была сооружена в Калифорнии в 1981 г., а затем они появились и в других регионах США, и в других странах. Хотя получаемая при их помощи электроэнергия продолжает оставаться еще весьма дорогой (30 центов за 1 кВт ч), наиболее богатые страны уже развернули широкую кампанию за установку солнечных батарей на крышах и фасадах домов. Лидерство в этом деле захватила Япония, которая контролирует также около 1/3 мирового рынка фотоэлектрических элементов. Но и Германия уже приступила к осуществлению программы под названием «1000 крыш и фасадов», а в США в 1997 г. тогдашний президент страны Клинтон провозгласил программу «Миллион крыш».

Наконец, третий способ, также обеспечивающий превращение солнечной энергии в электрическую, реализуется при помощи сооружения собственно солнечных электростанций (СЭС), которые подразделяются на два типа – башенные и параболические.

В 1970-х – начале 1980-х гг. башенные СЭС были построены в США, Японии, Испании, Италии, во Франции, в СССР, но затем они были остановлены из-за неконкурентоспособности. Однако опыт, накопленный при их эксплуатации, позволил начать проектирование нового поколения таких СЭС. На мировом «солнечном саммите», проведенном в середине 1990-х гг., была разработана Мировая солнечная программа на 1996–2005 гг., имеющая глобальные, региональные и национальные разделы.

Биомасса также представляет собой особый класс энергоресурсов, включающий в себя древесину, отходы лесной и деревообрабатывающей промышленности, растениеводства и животноводства. Когда биомассу относят к НВИЭ, то имеют в виду не прямое ее сжигание, например в виде дров или навоза, а газификацию и пиролиз, биологическую переработку с целью получения спиртов или биогаза. Для этой цели в зависимости от сельскохозяйственной специализации той или иной страны обычно используют отходы сахарного тростника, рисовую шелуху, стебли кукурузы, хлопчатника, скорлупу кокосовых, земляных и других орехов, а также навоз. Производство биогаза, хотя и полукустарными способами, получило наибольшее развитие в Китае, где насчитывают миллионы биогазовых установок, рассчитанных на одну семью. Быстро растет число таких установок в Индии. Есть они также в странах Юго-Восточной Азии, Центральной Америки, СНГ.

Крупнейший в мире производитель этилового спирта – Бразилия. С целью замены импортной нефти здесь в 1970-х гг. была разработана, а затем осуществлена в широких масштабах специальная программа «Этанол», предусматривавшая создание специальных плантаций сахарного тростника, из которого получают этиловый спирт, сооружение в сельской местности 280 дистилляционных заводов. Теперь значительная часть автопарка страны работает либо на чистом этаноле, либо на спирто-бензиновых смесях.

К альтернативным источникам энергии можно отнести также синтетическое горючее. В качестве сырья для его получения обычно рассматривают каменный и бурый уголь, горючие сланцы, битуминозные песчаники и биомассу.

Опыт получения синтетической нефти при помощи гидрогенизации угля имелся еще в Германии 1930-х гг. После начала энергетического кризиса многие страны Запада разработали обширные программы получения синтетического горючего из угля при помощи этого способа. То же относится и к газификации угля. Только в США, согласно энергетической программе президента Форда, намечалось построить 35–40 заводов по переработке угля в горючий газ. Но большинству этих программ не суждено было сбыться. Когда нефть снова подешевела, они потеряли актуальность. Жидкое горючее из угля в промышленных масштабах получает только ЮАР, где в 1980-х гг. оно наполовину удовлетворяло потребности страны в автомобильном топливе.

Крупнейшими ресурсами горючих (битуминозных) сланцев обладают страны СНГ, Эстония, США, Бразилия, Китай. По данным МИРЭК, из уже разведанных и доступных для извлечения запасов этих сланцев можно получить 40–50 млрд т нефти, что сравнимо с запасами зоны Персидского залива! Но в промышленных масштабах получение «сланцевой» нефти пока не практикуется.

То же можно сказать и об использовании битуминозных песчаников, запасы которых особенно велики в Канаде, Венесуэле и Колумбии. В Канаде они залегают на площади 75 тыс. км 2 в бассейне р. Атабаска (провинция Альберта). Подсчитано, что они содержат до 130 млрд т нефти, из которых доступны для извлечения 30–40 млрд т. В начале 1970-х гг. здесь были созданы мощности, позволявшие получать несколько миллионов тонн нефти. Но этот эксперимент не был продолжительным. Помимо высокой себестоимости такой нефти, сказалась и угроза состоянию окружающей среды. В Венесуэле, в так называемом поясе Ориноко, запасы тяжелой нефти, содержащейся в песчаниках, оцениваются в 185 млрд т, извлекаемые – в 40 млрд т. Их используют для получения смеси битума и воды, которую применяют как топливо.

Россия обладает большими ресурсами практически всех видов нетрадиционных возобновляемых источников энергии. Их экономически оправданный потенциал, предназначенный для первоочередного освоения, составляет в общей сложности 275 млн т условного топлива в год, т. е. примерно 1/4 годового потребления энергетических ресурсов в стране (в том числе геотермальная энергия – 115 млн тут, энергия биомассы – 35 млн, энергия ветра– 10 млн, солнечная энергия – 13 млн тут). Однако доля используемых НВИЭ в стране незначительна – всего 1 %, а ежегодное замещение органического топлива всеми их видами составляет 1,5 млн тут. В России как в стране очень богатой органическим топливом и гидроэнергией в течение длительного времени основное внимание традиционно уделялось крупнейшим и крупным энергетическим объектам. В условиях же хронического дефицита материально-финансового обеспечения трудно предвидеть их развитие в ближайшем будущем. Исключение составляет обширная зона Севера России, где более 70 % территории с населением в 20 млн человек образуют особый регион децентрализованного энергоснабжения. Вот почему федеральная программа «Энергообеспечение северных территорий в 1996–2000 гг.» предусматривала частичную замену доставляемого сюда органического топлива местными альтернативными источниками энергии. Энергетическая стратегия России исходит из того, что в 2010 г. НВИЭ будут удовлетворять 1 % потребностей страны в энергии.

Статьи по теме: