Ловим энергию молний. Можно ли поймать молнию и использовать её энергию? Как аккумулировать энергию от молнии

учащиеся 9 класса Артамонов Михаил, Денисов Дмитрий, Раца Диана

Человек научился использовать энергию воды – строя гидроэлектростанции, энергию ветра – строя ветряные станции и даже энергию атома – строя атомные электростанции. Сейчас активно используется солнечная энергия, аккумулируемая в солнечных батареях.

В будущем человечество будет искать альтернативные источники энергии. Природные ресурсы планеты Земля рано или поздно иссякнут, надо будет осваивать новые источники энергии. Возможно, человечество научится использовать энергию молнии. В молнии сосредоточена большая сила тока и большое напряжение.

В данном проекте мы попытались теоретически описать возможный вариант преобразования энергии молнии. В США ведутся исследования и разработки по данной теме. Данная тема работы актуальна в наши дни и в будущем.

Скачать:

Предварительный просмотр:

Международная молодежная научная конференция

«XXXIX Гагаринские чтения» МБОУ «Зубово – Полянская СОШ №1»

Использование энергии молнии.

Проект

(научно – техническое направление)

Исполнители: учащиеся 9 класса

Артамонов Михаил, Денисов Дмитрий, Раца Диана

Руководитель: учитель физики Велькин Николай Григорьевич

п. Ударный

2013г.

1. Введение

2. Теоретическая часть

2.1. История исследования молнии 4

2.2. Образование молнии и её виды. 5

3. Практическая часть

3.1. Расчеты _ 7

3.2. Принцип работы установки 8

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Альтернативные источники энергии. Грозовая электростанция

ВВЕДЕНИЕ

1.2 Проблемы развития энергетики

2.1 РАЗВИТИЕ АЛЬТЕРНАТИВНЫХ ИСТОЧНИКОВ ЭНЕРГИИ

3. ЭЛЕКТРОСТАНЦИЯ НА МОЛНИИ

3.1 Грозовая электростанция

ВВЕДЕНИЕ

Многолетние исследования показали - запасы многих видов органических источников энергии не бесконечны. Они истощаются с каждым годом в больших количествах в соответствии с их потреблением. Эти выводы привели к появлению множества вопросов в поиске новых источников энергии. Тем временем все источники энергии разделились на две основные категории. Все запасы существующего топлива для выработки энергии разделились на два основных типа:

Возобновляемые;

Не возобновляемые.

В связи с этим поиск новых месторождений и новых видов топлива в настоящее время играет главенствующую роль в обеспечении энергией весь мир и отдельные жизненно важные объекты. Однако новые месторождения также истощаются, а альтернативные источники энергии такие, как энергия ветра и солнца эксплуатируются лишь при благоприятных условиях и требуют немалых затрат в оснащении и эксплуатации. Это связано с их более высокой нестабильностью и изменением показателей эффективности в процессе работы.

Огромное преимущество альтернативной энергии заключается в “чистоте” получаемой и производимой энергии. Ведь она добывается из природных источников: волн, приливов/отливов, толщи Земли. Все природные явления и процессы насыщены энергией. Задача человечества заключается в ее изъятии и превращении в электрическую. Вопрос в том, что случится с Землей, когда энергия будет качаться тераваттами пока не беспокоит умы. Так что, можно сказать, что задача ясна. Осталось развивать данные отрасли.

1. КЛАССИЧЕСКИЕ ИСТОЧНИКИ ЭНЕРГИИ

Добыча ресурсов Земли подходит к завершению. Ведь практически все органические источники топлива воспроизводятся очень медленно или совсем нет. При этом человечество привыкло лишь брать, но не восполнять затраченные ресурсы. Поэтому вопрос энергетического истощения Земли не особо взволновал мир, кроме общественности и разных зеленых организаций, которые лишь грозят пальцем, если бросил бумажку на улице или не потушил костер. Поэтому к настоящему времени энергетические корпорации решают задачу лишь в поиске новых месторождений. Однако, как известно, новые разрабатываемые месторождения ничего не меняют, а точнее ухудшают экологическую обстановку еще больше.

Можно сказать, что поиски новых источников идут размеренным шагом: выращиваются энергетические элементы, добываются новые ресурсы для производства энергии. Ведь они также просуществуют относительно недолго.

Энергетика находится на первом месте в употреблении и преобразовании энергии. От нее в решающей мере зависит экономический потенциал государств и благосостояние людей. Она же оказывает наиболее сильное воздействие на окружающую среду, истощение ресурсов планеты и экономику государств. Очевидно, что темпы потребления энергии в будущем не прекратятся и даже увеличатся. В результате этого возникают следующие вопросы:

Какое влияние на биосферу и отдельные ее элементы оказывают основные виды современной (тепловой, водной, атомной) энергетики и как будет изменяться соотношение этих видов в энергетическом балансе в ближайшей и отдаленной перспективе;

Можно ли уменьшить отрицательное воздействие на среду современных (традиционных) методов получения и использования энергии;

Каковы возможности производства энергии за счет альтернативных (нетрадиционных) ресурсов, таких как энергия солнца, ветре, термальных вод и других источников, которые относятся к неисчерпаемым и экологически чистым.

Такой набор вопросов охватывает все сферы человеческой деятельности. Можно сказать, что в настоящее время задача экономико-экологического вопроса поставлена. Время действий.

1.1 Виды классических источников энергии

Все существующие виды энерготоплива в природе подразделяются на твердые, жидкие и газообразные. В отопительных приборах, для нагрева теплоносителя также применяется тепловое действие электрического тока. Некоторые группы топлива, в свою очередь, подразделяются на две подгруппы, из которых одна подгруппа представляет собой топливо в том виде, в каком оно добывается, и это топливо называется естественным; вторая подгруппа - топливо, которое получается путем переработки или обогащения естественного природного топлива; это называется искусственное топливо.

К твёрдому топливу относят:

а) естественное твёрдое топливо - дрова, каменный уголь, антрацит, торф;

б) искусственное твёрдое топливо - древесный уголь, кокс и пылевидное топливо, которое получается путём измельчения углей.

К жидкому топливу относят:

а) естественное жидкое топливо - нефть;

б) искусственное жидкое топливо - бензин, керосин, дизельное топливо (солярка) мазут, смола.

К газообразному топливу относят:

а) естественное газообразное топливо - природный газ;

б) искусственное газообразное топливо - генераторный газ, получаемый при газификации различных видов твердого топлива (торфа, дров, каменного угля и др.), коксовальный, доменный, светильный, попутный и другие газы.

Все виды органического природного топлива состоят из одних и тех же химических элементов. Разница между видами топлива состоит в том, что эти химические элементы содержатся в топливе в разном количестве.

Элементы, из которых состоит топливо, делятся на две группы.

1 группа: это те элементы, которые горят сами или поддерживают горение. К подобным элементам топлива относятся углерод, водород и кислород.

2 группа: это те элементы, которые сами не горят и не способствуют горению но они входят в состав топлива; к ним относятся азот и вода.

Особое место от названных элементов занимает сера. Сера является горючим веществом и при горении выделяет определённое количества тепла, но ее присутствие в топливе нежелательно, так как при горении серы выделяется сернистый газ, который переходит в нагреваемый металл и ухудшает его механические свойства.

Количество тепловой энергии, которое выделяет топливо при горении, измеряется калориями. Каждое топливо при горении выделяет неодинаковое количество тепла. Количество тепла (калорий), которое выделяется при полном сгорании 1 кг твердого или жидкого топлива или при сгорании 1 м3 газообразного топлива, называется как теплотворная способность топлива или теплота сгорания топлива. Теплота сгорания различных видов топлива имеет широкие пределы. Например, для мазута теплота сгорания составляет около 10000 ккал/кг, для угля 3000 - 7000 ккал/кг. Чем выше теплота сгорания топлива, тем топливо ценнее, так как для получения одного и того же количества тепла его потребуется меньше. Для сравнения тепловой ценности топлива или для производства расчётов расхода количества того или иного топлива применяется общая единица измерения или эталон топлива. В качестве такой единицы принято топливо Московского угля, имеющее теплотворную способность 7000 ккал/кг. Эта единица называется условное топливо. Для производства расчётов и сравнения расходов топлива различной теплоты сгорания необходимо знать калорийность топлива. К примеру, при проектировании, когда необходимо сравнить расход угля с расходом мазута и целесообразность строительства угольной или мазутной котельной необходимо учесть поправочный коэффициент на калорийность топлива.

Огромное многообразие ресурсов планеты очевидно, но картина мира не особо меняется.

1.3 Проблемы развития энергетики

Развитие индустриального общества опирается на постоянно растущий уровень производства и потребления различных видов энергии.

Как известно, в основе производства тепловой и электрической энергии лежит, как было сказано выше, процесс сжигания ископаемых энергоресурсов - угля, нефти или газа, а в атомной энергетике - деление ядер атомов урана и плутония при поглощении нейтронов.

Добыча, обработка и потребление энергоресурсов, металлов, воды и воздуха растет с большими требованиями человечества, при этом их запасы стремительно сокращаются. Особенно остро стоит проблема не возобновляемых органических ресурсов планеты.

Не составляет никакого труда догадаться, что органические ископаемые ресурсы, даже при вероятном замедлении темпов роста энергопотребления, будут в значительной мере израсходованы в самом ближайшем будущем.

Отметим также, что при сжигании ископаемых углей и нефти, обладающих сернистостью около 2,5%, ежегодно образуется до 400 млн. тонн сернистого газа и окислов азота, что составляет 70 кг вредных веществ на каждого жителя Земли в год.

Таким образом, даже сокращение потребления и экономичность полезных ископаемых не сможет помочь избежать энергетической катастрофы. Если в ближайшем будущем планета не станет непригодна для жизни, то критическая нужда в энергоресурсах обеспечена.

Выход остается в поиске и внедрении нескончаемых или возобновляемых источников энергии. Огромную важность играет борьба с отходами и выбросами в атмосферу тонн вредных и смертельно опасных в больших количествах веществ и тяжелых металлов.

Как уже известно, сгорание органического топлива вредно для окружающей среды. В настоящее время разрабатываются системы и устройства очистки выбросов в атмосферу продуктов сгорания. Среди устройств можно выделить следующие:

Фильтры на соплах Вентури;

Металлические лабиринтные фильтры;

Волокнистые синтетические объемные фильтры из нетканых материалов.

Из существующих методов очистки существуют следующие:

Адсорбционный метод.

Метод термического дожигания.

Термокаталитический метод.

Естественно такие средства стоят дорого. Кроме того, обслуживание систем требует наличия высококвалифицированного персонала.

2. АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ

Альтернативные источники энергии (АИЭ) в настоящее время являются наиболее существенным решением по отношению к производству электроэнергии из органического топлива. Альтернативная энергетика основана на преобразовании изначально экологически чистых компонентов, что в свою очередь, резко снижает вред производства энергии. К ним относится энергия:

Приливов и отливов;

Морских волн;

Внутреннее тепло планеты и др.

Основные причины, указывающие на важность скорейшего перехода к альтернативным источникам энергии:

Глобально-экологический: сегодня общеизвестен и доказан факт пагубного влияния на окружающую среду традиционных энергодобывающих технологий (в т. ч. ядерных и термоядерных), их применение неизбежно ведет к катастрофическому изменению климата уже в первых десятилетиях XXI веке.

Экономический: переход на альтернативные технологии в энергетике позволит сохранить топливные ресурсы страны для переработки в химической и других отраслях промышленности. Кроме того, стоимость энергии, производимой многими альтернативными источниками, уже сегодня ниже стоимости энергии из традиционных источников, да и сроки окупаемости строительства альтернативных электростанций существенно короче. Цены на альтернативную энергию снижаются, на традиционную - постоянно растут;

Социальный: численность и плотность населения постоянно растут. При этом трудно найти районы строительства АЭС, ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды. Общеизвестны факты роста онкологических и других тяжелых заболеваний в районах расположения АЭС, крупных ГРЭС, предприятий топливно-энергетического комплекса, хорошо известен вред, наносимый гигантскими равнинными ГЭС, - всё это увеличивает социальную напряженность.

Несмотря на это переход на АИЭ происходит плавно. Многие источники энергии устанавливают на определенной территории, и их эффективность зависит от благоприятных условий, времени и данных. Новинка всегда стоит гораздно дороже, чем укоренившийся продукт. Поэтому установка и эксплуатация стоит немалых затрат. Однако во всем мире уже довольно часто можно встретить ветряки или солнечные панели на крыше жилого здания, то есть АИЭ достигли массового применения, а это значит, что строительство в скором времени значительно снизит тарифы. Не стоит забывать про мегакорпорации и небольшие компании, которые существуют за счет добычи полезных ископаемых: нефти, газа, угля, и вряд ли они прекратят их добычу в силу спасения экологии планеты. Поэтому для успокоения общественности на “грязное” производство закупают различного рода очистные и фильтрующие системы. Но это лишь по большей мере единицы компаний и статьи в газетах и интернете.

2.1 Развитие альтернативных источников энергии

Основное достоинство АИЭ - это производство безвредной энергии. Значит, переход на АИЭ может изменить энергетическую и экологическую обстановку в мире. Энергия, получаемая с помощью АИЭ бесплатна.

Наиболее явными из недостатков медленного внедрения данной категории производства энергии являются: недостаточное финансирование и перебои в работе. Это связано с тем, что до сих пор их внедрение и производство является весьма дорогостоящим процессом. Новизна и недостаточная осведомленность для многих организаций также значительна. Многие производители предпочитают вредные и опасные для здоровья и окружающей среды электростанции в силу их надежности и готовности к полноценной работе, чем дорогостоящие и “капризные” системы производства энергии на возобновляемых источниках.

Перебои энергии являются существенным недостатком. Например, производство солнечной энергии возможно лишь в дневное время суток. Поэтому чаще всего вместе с альтернативными источниками энергии устанавливаются все те же вредные производства для компенсации энергоресурсов. При этом лишняя приобретенная энергия накапливается в аккумуляторных батареях.

АИЭ находятся на стадии значительного развития и внедрения. Многие страны уже перешли на них и добывают энергию в огромных количествах. Многие государства благодаря своему территориальному расположению активно используют АИЭ.

Суммарная установленная мощность ветрогенераторов в Китае на 2014 год составила 114763 МВт. Что же заставило правительство так активно развивать ветроэнергетику? Китай является лидером по выбросам в атмосферу СО2Планируется использовать в первую очередь геотермальную, ветряную, солнечную энергию. Согласно государственному плану, к 2020 г. в 7 районах страны будут построены огромные ветряные ЭС с общей выработкой в 120 гигаватт.

В США активно развивают альтернативную энергетику. Например, суммарная мощность американских ветрогенераторов США в 2014 г. составила 65879 МВт. США является мировым лидером по развитию геотермальной энергетики - направлению, использующему для получения энергии разницу температур между ядром Земли и ее корой. Один из методов использования горячих геотермальных ресурсов - УГС (усовершенствованные геотермальные системы), в которые вкладывает средства Министерство энергетики США. Их поддерживают также научные центры и венчурные компании (в частности, Google), но пока УГС остаются коммерчески неконкурентоспособными.

Можно также выделить такие страны по огромную влиянию АИЭ, как Германия, Япония, Индия и другие.

3. ЭЛЕКТРОСТАНЦИЯ НА МОЛНИИ

Одной из первой компанией по использованию энергии из грозовых облаков стала американская компания Alternative Energy Holdings. Она предложила способ использования даровой энергии путем ее сбора и утилизации, возникающей из электрических разрядов грозовых облаков. Экспериментальная установка была запущена в 2007 году и называлась “сборщик молний”. Разработки и исследования грозовых явлений содержат огромные скопления энергии, которые американская компания предложила использовать в качестве источника электроэнергии.

3.1 Грозовая электростанция

Грозовая электростанция, по сути, представляет собой классическую электростанцию, которая преобразует энергию молний в электричество. На данный момент грозовая энергетика активно исследуется, и возможно в ближайшем будущем появятся в больших количествах грозовые электростанции наряду с другими электростанции на базе чистой энергии.

3.1.1 Молния как источник грозовых перенапряжений

Грозовые молнии представляют собой электрические разряды, накапливающиеся в больших количествах в облаках. За счет потоков воздуха в грозовых облаках происходит накопление и разделение положительных и отрицательных зарядов, хотя вопросы по данной теме до сих пор исследуются.

Одно из распространенных предположений образования электрических зарядов в облаках связано с тем, что данный физический процесс происходит в постоянном электрическом поле земли, которое обнаружил еще М. В. Ломоносов во время проведения опытов.

Рис. 3.1. Наглядная схема развития грозы

Наша планета всегда имеет отрицательный заряд, при этом напряженность электрического поля вблизи поверхности земли составляет около100 В/м. Она обусловлена зарядами земли и мало зависит от времени года и суток и почти одинакова для любой точки земной поверхности. Воздух, окружающий Землю, имеет свободные заряды, которые движутся по направлению электрического поля Земли. Каждый кубический сантиметр воздуха вблизи земной поверхности содержит около 600 пар положительно и отрицательно заряженных частиц. С удалением от земной поверхности плотность заряженных частиц в воздухе растет. У земли проводимость воздуха мала, но на расстоянии 80 км от земной поверхности она увеличивается в 3 млрд. раз и достигает проводимости пресной воды.

Таким образом, Землю с окружающей атмосферой по электрическим свойствам можно представить как шаровой конденсатор колоссальных размеров, обкладками которого являются Земля и проводящий слой воздуха, находящийся на расстоянии 80 км от поверхности Земли. Изолирующей прослойкой между этими обкладками служит мало-проводящий электричество слой воздуха толщиной 80 км. Между обкладками такого конденсатора напряжение составляет около 200 кВ, а ток, проходящий под воздействием этого напряжения, равняется 1,4 кА. Мощность конденсатора составляет около 300 МВт. В электрическом поле этого конденсатора в интервале от 1 до 8 км от поверхности Земли образуются грозовые облака и совершаются грозовые явления.

Молния, как носитель электрических зарядов, является наиболее близким к электричеству источником, по сравнению с другими АИЭ. Заряд, который накапливается в облаках, имеет потенциал в несколько миллионов вольт относительно поверхности Земли. Направление тока молнии может быть как от земли к облаку, при отрицательном заряде тучи (в 90% случаев), так и от облака к земле (в 10% случаев). Длительность разряда молнии составляет в среднем 0,2 с, редко до 1…1,5 с, длительность переднего фронта импульса - от 3 до 20 мкс, ток составляет несколько тысяч ампер, до 100 кА, температура в канале достигает 20000 ?С, появляется мощное магнитное поле и радиоволны. Молнии могут образовываться также при пылевых бурях, метелях, извержениях вулканов.

альтернативный энергия грозовой электростанция

3.1.2 Принцип действия грозовой электростанции

Основан на все том же процессе, что и другие электростанции: преобразование энергии источника в электричество. По сути, молния содержит то же электричество, то есть ничего преобразовывать не надо. Однако указанные выше параметры “стандартного” грозового разряда настолько велики, что если это электричество попадет в сеть, то все оборудование просто сгорит в считанные секунды. Поэтому в систему вводят мощные конденсаторы, трансформаторы и различного рода преобразователи, подстраивающие данную энергию под требуемые условия применения в электросетях и оборудовании.

3.1.3 Преимущества и недостатки грозовой электростанции

Преимущества грозовых электростанций:

Земельно-ионосферный суперконденсатор постоянно подзаряжается с помощью возобновляемых источников энергии -- солнца и радиоактивных элементов земной коры.

Грозовая электростанция не выбрасывает в окружающую среду никаких загрязнителей.

Оборудование грозовых станций не бросается в глаза. Воздушные шары находятся слишком высоко для того, чтобы их увидеть невооруженным глазом. Для этого понадобится телескоп или бинокль.

Грозовая электростанция способна вырабатывать энергию постоянно, если поддерживать шары в воздухе.

Недостатки грозовых электростанций:

Грозовое электричество, как и энергию солнца или ветра, трудно запасать.

Высокое напряжение в системах грозовых электростанций может быть опасным для обслуживающего персонала.

Общее количество электроэнергии, которую можно получать из атмосферы, ограниченно.

В лучшем случае грозовая энергетика может служить лишь незначительным дополнением к другим источникам энергии.

Таким образом, грозовая энергетика в настоящее время достаточно ненадежна и уязвима. Однако это не уменьшает ее значимости в пользу перехода на АИЭ. Некоторые районы планеты насыщены благоприятными условиями, что может значительно продолжить изучение грозовых явлений и получение из них необходимого электричества.

3.2 Расчет грозовой электростанции

Расчет грозовой электростанции рассчитан, в первую очередь, на определение выходной мощности. Ведь задача любой электростанции заключается в максимальной энергетической эффективности, чтобы окупить средства на эксплуатацию и установку, а также производство электроэнергии. Чем выше количество выходной энергии, тем больший доход она принесет, и большее количество объектов будет ею обслужено. Так как основой входящей энергии грозовой электростанции является грозовой разряд, то, благодаря схожести его состава с выходной электроэнергией, расчет мощности электростанции практически эквивалентен мощности заряда молнии за исключением внутренних потерь.

На выходную мощность электростанции влияют такие параметры, как место установки, эффективность оборудования

Форма импульсов тока молнии i(t) описывается выражением:

где I - максимум тока; k - корректирующий коэффициент; t - время; - постоянная времени фронта; - постоянная времени спада.

Параметры, входящие в эту формулу, приведены в табл. 3.1. Они соответствуют наиболее сильным молниевым разрядам, которые встречаются редко (менее чем 5% случаев). Токи величиной 200 кА встречаются в 0,7...1% случаев, 20 кА - в 50% случаев.

Таблица 3.1. Параметры формулы (3.1).

Параметр

Для первого случая результат формы импульса будет таковым:

Таким образом, форма молнии представляет собой следующий вид:

Рис. 3.2. График формы импульса тока

При всем при этом максимальная разница потенциалов молнии достигает 50 миллионов вольт, при токе до 100 тысяч ампер. Для расчётов энергии молнии возьмем цифры ближе к средним для большинства молний, а именно: напряжение 25 миллионов вольт и ток 10 тысяч ампер.

При грозовом разряде, электрический потенциал уменьшается до нуля. Поэтому для того, чтобы правильно определить среднюю мощность грозового разряда, в расчётах надо брать половину первоначального напряжения.

Теперь мы имеем следующую мощность электрического разряда:

где P - мощность грозового разряда, U - напряжение; I - сила тока.

То есть по (3.2) получаем:

Значит, мощность грозового разряда составляет 125 миллионов киловатт. С учетом времени в несколько тысячных секунды определи общее количество энергии молнии:

Вт·ч=34,722 кВт·ч,

где t1 - количество секунд в часе; t2 - время длительности грозового разряда.

Возьмем среднюю цену электрической энергии 4 рубля за 1 кВт·ч. Тогда стоимость всей энергии молнии составит 138,88 рублей.

Реально получить и использовать энергию по данным расчетам, например, на нагрев воды, можно только небольшую часть. Основная часть энергии молнии расходуется при искровом разряде на нагрев атмосферы и даже теоретически потребители могут использовать меньшую часть энергии молнии.

В процессе работы над курсовым проектом сделаны выводы об истощении ресурсов планеты и загрязнении атмосферы и поверхности земли в процессе их переработки и добычи. Кроме того, рассмотрены основные виды замены вредного производства на более щадящее путем выработки энергии из чистых природных источников таких, как вода, приливы, Солнце и др.

В курсовом проекте рассматривается возможность использования энергии грозовых разрядов для преобразования их в электроэнергию. Выполнены расчеты по количеству и стоимости грозового разряда. Однако данные расчеты относительны. Ведь энергия молнии расходуется на атмосферные процессы, и лишь ее небольшая часть добирается до электростанции.

Размещено на Allbest.ru

Подобные документы

    Существующие источники энергии. Мировые запасы энергоресурсов. Проблемы поиска и внедрения нескончаемых или возобновляемых источников энергии. Альтернативная энергетика. Энергия ветра, недостатки и преимущества. Принцип действия и виды ветрогенераторов.

    курсовая работа , добавлен 07.03.2016

    Характеристика невозобновляемых источников энергии и проблемы их использования. Переход от традиционных источников энергии к альтернативным. Нефть и газ и их роль в экономике любого государства. Химическая переработка нефти. Добыча нефти в Украине.

    реферат , добавлен 27.11.2011

    Проблемы развития и существования энергетики. Типы альтернативных источников энергии и их развитие. Источники и способы использования геотермальной энергии. Принцип работы геотермальной электростанции. Общая принципиальная схема ГеоЭС и ее компоненты.

    курсовая работа , добавлен 06.05.2016

    Существующие источники энергии. Типы электростанций. Проблемы развития и существования энергетики. Обзор альтернативных источников энергии. Устройство и принцип работы приливных электростанций. Расчет энергии. Определение коэффициента полезного действия.

    курсовая работа , добавлен 23.04.2016

    Ветроэнергетика, солнечная энергетика и гелиоэнергетика как альтернативные источники энергии. Нефть, уголь и газ как основные источники энергии. Жизненный цикл биотоплива, его влияние на состояние природной среды. Альтернативная история острова Самсо.

    презентация , добавлен 15.09.2013

    Обзор развития современной энергетики и ее проблемы. Общая характеристика альтернативных источников получения энергии, возможности их применения, достоинства и недостатки. Разработки, применяемые в настоящее время для нетрадиционного получения энергии.

    реферат , добавлен 29.03.2011

    География мировых природных ресурсов. Потребление энергии - проблема устойчивого развития. Статистика потребления мировой энергии. Виды нетрадиционных (альтернативных) источников энергии и их характеристика. Хранение отработавшего ядерного топлива.

    презентация , добавлен 28.11.2012

    Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.

    курсовая работа , добавлен 30.07.2012

    Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат , добавлен 27.02.2010

    Генерация электроэнергии из энергии ветра, история ее использования. Ветровые электростанции и их основные типы. Промышленное и частное использование ветровых электростанции, их преимущества и недостатки. Использование ветровых генераторов в Украине.

Грозовая энергетика – это пока лишь теоретическое направление. Суть методики заключается в поимке энергии молний и перенаправлении ее в электросеть. Данный источник энергии возобновляем и относится к альтернативным, т.е. экологически безопасным.

Процесс образования молний весьма сложен. Изначально из наэлектризованного облака к земле устремляется разряд-лидер, который был сформирован электронными лавинами, слившимися в разряды (стримеры). Этот разряд оставляет за собой горячий ионизированный канал, по которому в обратном направлении движется главный разряд молнии, вырванный с Земли мощным электрическим полем. За доли секунды процесс повторяется несколько раз. Основная проблема – это поймать разряд и перенаправить его в сеть.

За небесным электричеством охотился еще Бенджамин Франклин. Во время грозы он запустил воздушного змея в облако и понял, что тот собирает электрический заряд.

Энергия молний – это 5 млрд джоулей чистой энергии в одном ударе, что сопоставимо со 145 л бензина. Считается, что 1 разряд молнии содержит в себе такое количество энергии, которое все население США потребляет в течение 20 минут.

Ежегодно по всему миру регистрируется около 1,5 млрд разрядов, т.е. молния бьет по поверхности Земли примерно 40-50 раз в секунду.

Эксперименты

11 ноября 2006 г. компания Alternative Energy Holdings заявила о своих успехах в деле создания прототипа конструкции, которая могла бы продемонстрировать «захват» молнии с последующим преобразованием ее в «бытовую» электроэнергию. Компания заявила, что окупаемость действующего промышленного аналога составит 4-7 лет при розничной цене 0,005 долл. США за 1 кВт-ч. К сожалению, руководство проекта после серии практических опытов было вынуждено сообщить о провале. Тогда Мартин А. Умани сравнил энергию молний с энергией атомной бомбы.

В 2013 г. силами сотрудников университета Саунгтгемптона в лабораторных условиях был смоделирован искусственный заряд, аналогичный по всем параметрам молнии естественного происхождения. Благодаря сравнительно простому оборудованию ученые смогли «поймать» его и всего за несколько минут полностью зарядить аккумулятор смартфона.

Перспектива

Молниевые фермы пока являются мечтой. Они бы стали неиссякаемыми экологически безопасными источниками весьма дешевой энергии. Развитию данного направления энергетики препятствует ряд фундаментальных проблем:

  • предсказать время и место грозы невозможно. Это означает, что даже там, где установлен максимум по ударам молний, нужно смонтировать достаточно много «ловушек»;
  • молния – это кратковременный энергетический всплеск, длительность которого равна долям секунды, и его нужно очень быстро осваивать. Для решения этой задачи нужны мощнейшие конденсаторы, которых еще не существует, а цена их, вероятно, будет очень высока. Можно применить и разнообразные колебательные системы с контурами 2-го и 3-го рода, позволяющие согласовывать нагрузку с внутренним сопротивлением генератора;
  • мощность разрядов также сильно отличается. Большинство молний – это 5-20 кА, но бывают всполохи силой тока в 200 кА, а каждый из них нужно привести к стандарту в 220 В и 50-60 Гц переменного тока;
  • молния бывает отрицательной, образующейся из энергии, скопившейся в нижней части облака, и положительной, накапливающейся в верхней его части. Данный фактор также нужно принимать во внимание при оборудовании молниевой фермы. Более того, чтобы уловить положительный заряд, потребуются затраты энергии, что доказано на примере люстры Чижевского;
  • плотность заряженных ионов в 1 куб.м атмосферы низка, сопротивление воздуха велико. Соответственно «поймать» молнию сможет только ионизированный электрод, максимально приподнятый над поверхностью земли, но он сможет улавливать энергию только в виде микротоков. Если же поднять электрод слишком близко к наэлектризованным облакам, это может спровоцировать молнию, т.е. получится кратковременный, но мощный всплеск напряжения, который приведет к поломке оборудования молниевой фермы.

Несмотря на очевидные сложности идея создания молниевых ферм жива: очень хочется человечеству укротить природу и получить доступ к огромным возобновляемым запасам энергии.

Грозовая энергетика – это разновидность альтернативной энергетики, которая должна «ловить» энергию молнии и направлять ее в электросеть. Такой источник является нескончаемым ресурсом, который постоянно восстанавливается. Молния – это сложный электрический процесс, который разделен на несколько видов: негативный и позитивный. Первый вид молний накапливается в нижней части облака, другой – наоборот, собирается в верхнем отделе. Для того, чтобы «поймать» и удержать энергию молнии, нужно использовать мощные и дорогостоящие конденсаторы, а также разнообразные колебательные системы, которые имеют контуры второго и третьего рода. Это необходимо для того, чтобы согласовывать и равномерно распределять нагрузку с внешним сопротивлением рабочего генератора.

Пока еще грозовая энергетика – это неоконченный и не совсем сформированный проект, хотя и достаточно перспективный. Привлекательной есть возможность постоянно восстанавливать ресурсы. Очень важно то, насколько большая мощность исходит от одного разряда, который способствует производству достаточного количества энергии (около 5 млрж Дж чистой энергии, что равняется 145 литрам бензина).

Процесс создания разряда молнии

Процесс создания разряда молнии – очень сложный и технический. Вначале из тучи к земле отправляется разряд-лидер, который сформирован электронными лавинами. Эти лавины соединяются в разряды, которые имеют название «стримеры». Разряд-лидер создает горячий ионизированный канал, через который в противоположном направлении двигается главный разряд молнии, что вырывается из поверхности нашей планеты толчком сильного электрического поля. Такие системные манипуляции могут повторяться несколько раз подряд, хотя нам может казаться, что прошло всего несколько секунд. Поэтому процесс «ловли» молнии, превращения ее энергии на ток и последующего хранения такой сложный.

Проблематика

Существуют следующие аспекты и недостатки грозовой энергетики:

  • Ненадежность источника энергии. Из-за того, что невозможно наперед предвидеть где и когда возникнет молния, возможно возникновение проблем с созданием и получением энергии. Изменчивость такого явления существенно влияет на значимость всей идеи.
  • Низкая продолжительность разряда. Разряд молнии возникает и действует считанные секунды, поэтому очень важно оперативно среагировать и «поймать» его.
  • Нужда использовать конденсаторы и колебательные системы. Без применения этих приборов и систем невозможно полноценно получать и превращать энергию грозы.
  • Побочные проблемы с «ловлей» зарядов. Из-за низкой плотности заряженных ионов создается большое сопротивление воздуха. «Поймать» молнию можно с использованием ионизированного электрода, который нужно максимально поднять над поверхностью земли (он может «ловить» энергию исключительно в виде микротоков). Если поднять электрод слишком близко к наэлектризированным тучам, то это спровоцирует создание молнии. Такой кратковременный, но мощный заряд может привести к числительным поломкам грозовой энергостанции.
  • Дорогая стоимость всей системы и оборудования. Грозовая энергетика через свою специфическую структуру и постоянную переменчивость подразумевает использование разнообразного оборудования, которое стоит очень дорого.
  • Преобразование и распределение тока. Из-за переменчивости мощности зарядов могут возникнуть проблемы с их распределением. Средняя мощность молний составляет от 5 до 20 кА, однако, бывают вспышки силой тока и до 200 кА. Любой заряд нужно распределить на меньшую мощность к показателю в 220 В или в 50-60 Гц переменного тока.

Эксперименты с установкой грозовых энергетических станций

11 октября 2006 года было объявлено про удачную конструкцию прототипа модели грозовой энергостанции, которая способна «ловить» молнию и превращать в чистую энергию. Такими достижениями смогла похвастаться компания Alternative Energy Holdings. Инновационный производитель отметил, что такая установка может решить несколько экологических проблем, а также значительно снизить стоимость производства энергии. Компания уверяет, что подобная система окупится уже через 4-7 лет, а «грозовые фермы» будут иметь возможность производить и продавать электроэнергию, которая отличается от стоимости традиционных источников энергии (0,005 $ за кВт/год).

Сотрудники Саунгтгемптского университета в 2013 году в лабораторных условиях смоделировали искусственный заряд молнии, который по своим свойствам идентичен молнии естественного происхождения. Используя несложное оборудование, ученые смогли «словить» заряд и с его помощью зарядить аккумулятор мобильного телефона.

Исследования грозовой активности, карты частоты молний

Специалисты NASA, которые работают со спутником «Миссия измерения тропических штормов», в 2006 году провели исследования грозовой активности в разных уголках нашей планеты. Позже было оповещено данные о частоте происхождения молний и созданию соответствующей карты. Такие исследования сообщили о том, что существуют определенные регионы, в которых на протяжении года возникает до 70 ударов молнии (на квадратный км площади).

Гроза – это сложный электростатический атмосферный процесс, который сопровождается молниями и громом. Грозовая энергетика – это перспективная альтернативная энергетика, которая может помочь человечеству избавится от энергетического кризиса и обеспечить его постоянно возобновляющимися ресурсами. Не смотря на все преимущества такого вида энергии, существует много аспектов и факторов, которые не позволяют активно продуцировать, использовать и сохранять электроэнергию данного происхождения.

Сейчас ученые всего мира изучают этот сложный процесс и разрабатывают планы и проекты по устранению сопутствующих проблем. Возможно, со временем человечество сможет укротить «строптивую» энергию молнии и перерабатывать ее в ближайшем будущем.

ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2332816

УСТРОЙСТВО ДЛЯ НАКОПЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ МОЛНИИ

Имя изобретателя: Блескин Борис Иванович, Трушкин Николай Сергеевич, Хлестков Юрий Алексеевич, Леонов Борис Иванович, Машков Олег Алексеевич, Рыбкин Евгений Александрович, Ишутин Василий Александрович, Новиков Евгений Геннадьевич, Блескин Александр Борисович, Машков Сергей Олегович
Имя патентообладателя: Блескин Борис Иванович, Трушкин Николай Сергеевич, Хлестков Юрий Алексеевич, Леонов Борис Иванович, Машков Олег Алексеевич
Адрес для переписки: 115612, Москва, ул. Борисовские пруды, 22, корп.1, кв.120, Б.И. Блескину
Дата начала действия патента: 17.11.2006

Изобретение относится к области приборостроения и может быть использовано для накопления электрической энергии. Технический результат - расширение функциональных возможностей. Для достижения данной цели громоотвод выполнен в виде проводника с наименьшим сопротивлением току атмосферного электричества. Вблизи громоотвода расположены элементы для съема энергии. При этом элемент для съема энергии содержит катушку индуктивности, полупроводниковый элемент и емкость, соединенные последовательно с образованием единого электрического контура. Катушка индуктивности и полупроводниковый элемент имеют сопротивление току не более 1 Ом, а элемент для съема энергии расположен на расстоянии от 0,1 до 10 м от громоотвода.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к физике, а именно к электротехническим устройствам для использования электрической энергии молнии и атмосферы в целом. Оно может быть использовано в районах, где часто бывают грозы, как источники энергии для промышленных и хозяйственных целей.

Известно устройство для использования атмосферной электрической энергии, содержащее вертикально установленный громоотвод, соединенный со средством заземления, и элемент для съема энергии (Авторское свидетельство СССР №781, кл. Н05F 7/00, 1925 г.). Данное устройство может быть использовано для накопления электрической энергии.

Однако известное устройство не позволяет использовать электрическую энергию молнии, поскольку оно не приспособлено к удару молнии, а выделяемая при ударе молнии энергия приводит к его разрушению. В то же время для накопления электрической энергии атмосферы ее параметры сопротивления току весьма велики.

Задачей настоящего изобретения является получение дешевого источника энергии в районах, где часто бывают грозы.
Техническим результатом изобретения является создание устройства, которое позволяет накапливать и электрическую энергию, выделяемую в молниеотводе при ударе в него молнии, а также извлекать ее избыток из атмосферы между разрядами молний.

Решение указанной задачи достигается тем, что в известном устройстве для накопления энергии, содержащем вертикально установленный громоотвод, соединенный со средством заземления, и элемент для съема энергии, громоотвод выполнен в виде проводника с наименьшим сопротивлением току атмосферного электричества, вблизи которого расположено одно или несколько элементов для съема энергии.

Кроме того, элемент для съема энергии может содержать, например, катушку индуктивности, полупроводниковый элемент и емкость, соединенные последовательно с образованием единого электрического контура, при этом катушка индуктивности и полупроводниковый элемент имеют наименьшее сопротивление току не более 1 Ом, а элемент для съема энергии расположен на расстоянии от 0,1 до 10 м от громоотвода.

В другом случае элемент для съема энергии имеет катушку индуктивности, полупроводниковый элемент и емкость, соединенные последовательно с образованием единого электрического контура, катушка индуктивности размещена ортогонально любой плоскости, проходящей через ось громоотвода, и выполнена в виде тороида, ось симметрии которого совпадает с осью громоотвода, при этом катушка индуктивности и полупроводниковый элемент имеют наименьшее сопротивление току не более 1 ом.

Средство заземления в предлагаемом устройстве для накопления энергии может быть выполнено в виде открытой или замкнутой емкости, наполненной электролитом, а громоотвод может быть выполнен, например, в виде токопроводного стержня.

На фиг.1 изображена электрическая схема устройства для накопления энергии молнии с катушкой индуктивности, расположенной вблизи громоотвода, выполненного в виде токопроводного стержня. На фиг.2 изображена электрическая схема устройства для накопления энергии молнии с катушкой индуктивности, выполненной в виде тороида, ось симметрии которого совпадает с осью громоотвода. На фиг.3 изображено устройство для накопления энергии молнии со средством заземления, выполненным в виде открытой емкости, наполненной электролитом, например водой.

Устройство для накопления энергии содержит громоотвод 1, например, вертикально установленный токопроводный стержень, соединенный со средством заземления 2, и элемент 3 для съема энергии. Громоотвод 1 выполнен в виде проводника, вдоль которого расположено один или несколько элементов 3 для съема энергии, каждое из которых имеет, например, катушку 4 индуктивности, полупроводниковый элемент 5 и конденсатор 6, соединенные последовательно с образованием единого электрического контура. Накапливаемое на конденсаторе 6 напряжение можно снять для дальнейшего использования.

Катушка 4 индуктивности в предлагаемом устройстве может быть размещена ортогонально любой плоскости, проходящей через ось громоотвода, и выполнена в виде тороида, ось симметрии которого совпадает с осью громоотвода, при этом катушка индуктивности и полупроводниковый элемент имеют наименьшее сопротивление току не более 1 Ом (см. фиг.2).

Устройство для накопления энергии со средством заземления, выполненным в виде емкости 7 (см. фиг.3), наполненной электролитом, например водой, имеет дно, выполненное в виде токопроводного листа 8, соединенного с громоотводом 1. Предлагаемое устройство может содержать несколько ярусов соленоидов 9, расположенных соосно с громоотводом 1 внутри корпуса 10, снабженного крышкой 11. При этом корпус 10 установлен на фундаменте 11 в почве 12.

Устройство для накопления электрической энергии молнии работает следующим образом

При ударе молнии в молниеотвод устройства накопления энергии по стержню протекает ток порядка I=(2-5)·10 5 А. Этот ток создает вокруг себя круговое магнитное поле Н, в которое помещают катушку индуктивности. При этом ЭДС (Е), возникающую в катушке индуктивности, накапливают на конденсаторе 6.

В зависимости от расстояния между элементами для съема энергии и стержнем 1 можно получать ЭДС (Е) разной величины. Этой ЭДС заряжают конденсатор 6 (см фиг.1).
В качестве громоотвода используют, например, провод диаметром (6-10) мм или токопроводный канат.

С электрической точки зрения, устройство является трансформатором тока, с той лишь разницей, что вторичная обмотка замкнута на обычный накопитель электрической энергии - диод-емкость. Накопленная электростатическая энергия с емкости 6 может быть направлена к различным потребителям от осветительных устройств до электродвигателей, раскручивающих маховики, аккумулирующих механическую энергию, более выгодную, чем электростатическую.

Пример 1.
Устройство для накопления энергии с катушкой 3 индуктивности, которая размещена на расстоянии от одного до десяти метров от стержня 1 и ориентирована ортогонально любой плоскости, проходящей через стержень (см. фиг.1).

Пример 2.
Устройство для накопления энергии с катушкой 3 индуктивности, выполненной в виде тороида, ось симметрии которого совпадает со стержнем 1 (см. фиг.2).

Определяем величину ЭДС Е, которая возникает на соленоиде диаметром d=100 мм и числом витков n=10 3 и расстоянии от снижения R=10 м.

где 0 - магнитная проницаемость пустоты, равная 4π ·10 7 " S - площадь поперечного сечения соленоида, n - число витков.

Соленоид ориентирован вдоль линии Н, а изменение напряженности магнитного поля происходит импульсно за время τ при протекании заряда через стержень.

В этом случае ΔН/Δt по закону Био-Савара-Лапласа определяется из соотношения

ΔН/Δt=I/(2π ·R·τ), где I - величина тока, протекающего через стержень во время удара молнии.

Следовательно, полагая τ=5·10 -3

Расположив по кругу множество соленоидов в несколько ярусов, можно получить большое количество источников постоянного тока, которые можно использовать для заряда малых аккумуляторов или одного большого.

Пример 3.
При использовании предлагаемого устройства (фиг.3) для очистки воды пар, возникающий из-за разогрева токопроводного листа 8, конденсируют любым известным способом.

Кроме того, образованный пар можно использовать для приведения в действие паровых механизмов, утилизирующих энергию пара.

Таким образом, с помощью предложенного устройства для накопления энергии значительную часть энергии молнии можно использовать в средстве заземления, выполнив его в виде замкнутой оболочки соответствующей прочности, которую оборудуют редукционными клапанами, для получения чистой воды или импульсных паровых двигателей. Поршень такого двигателя с возвратной пружиной может совершать многократные колебания, а будучи соединенным с постоянным магнитом, помещенным внутрь соленоида, он может служить ротором линейного генератора тока. В этом случае в устройстве для накопления энергии элемент для съема энергии может быть размещен на расстоянии от одного до десяти метров от стержня 1.

Техническая эффективность изобретения состоит в том, что благодаря применению предложенного устройства в местах, где часто бывают грозы, возможно утилизировать часть энергии молнии. Энергия атмосферного электричества, сохраняемая с помощью предлагаемого устройства при разрядах молнии, может быть преобразована в любой другой вид энергии, например:

    для производства чистой воды при испарении и конденсации пара в накопителе;

    для вращения маховиков большой массы;

    для накопления механической энергии.

Предложенное устройство простое как при изготовлении, так и в эксплуатации. Особенно эффективно оно может быть использовано в районах, где грозы - очень частое атмосферное явление.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Устройство для накопления электрической энергии молнии, содержащее вертикально установленный громоотвод, соединенный со средством заземления, и элемент для съема электрической энергии, отличающееся тем, что громоотвод выполнен в виде проводника с наименьшим сопротивлением току атмосферного электричества, вблизи которого расположено одно или несколько элементов для съема электрической энергии, при этом элемент для съема электрической энергии содержит катушку индуктивности, полупроводниковый элемент и емкость, соединенные последовательно с образованием единого электрического контура, а катушка индуктивности и полупроводниковый элемент имеют сопротивление току не более 1 Ом, а элемент для съема энергии расположен на расстоянии от 0,1 до 10 м от громоотвода.

2. Устройство для накопления электрической энергии молнии по п.1, отличающееся тем, что катушка индуктивности размещена ортогонально любой плоскости, проходящей через ось громоотвода, и выполнена в виде тороида, ось симметрии которого совпадает с осью громоотвода, при этом катушка индуктивности и полупроводниковый элемент имеют сопротивление току не более 1 Ом.

3. Устройство для накопления электрической энергии молнии по п.1, отличающееся тем, что средство заземления выполнено в виде открытой или замкнутой емкости, наполненной электролитом.

4. Устройство для накопления электрической энергии молнии по п.1, отличающееся тем, что громоотвод выполнен в виде стержня.

Статьи по теме: