Изучение свойств тканей на экспериментальных образцах таблица. Изучение свойств ксеноперикардиальной пластины, обработанной модифицированным химико-ферментативным методом

«Аппликация из ткани» - Декоративные: Резать кончиками - нельзя, серединкой - можно. А теперь несколько рекомендаций! Предметные: Вы познакомились с лоскутной техникой «аппликация». Мал лоскуток да дорог! Сказки, рассказы… Изображающие узор или орнамент. I. Обращайтесь с ножницами очень осторожно. Аппликация из ткани. «Всё что делаем мы сами Называем чудесами!».

«Состав слова» - Составить алгоритм выделения значимых частей в слове. Сочинить сказку о составе слова. Проблема (педагогическая). Выяснить, какие части есть у слов. Ученики допускают ошибки при разборе слов по составу. Составить справочник. Выяснить, как из отдельных частей образуются слова. Предмет: Русский язык.

«Ткани и органы» - Группа Средняя Агглютиногены Агглютинины. Мочевыделительная. Мышечные ткани. Пищеварительная. Печень. Легкие. IV группа. Почка. Гортань. Лимфатическая. Дыхательная. Эпителиальная ткань. Мускулатура. Нервная. Головной мозг. II группа. Скелет. А ещё сможете определить группу своей крови… «Расширенное изучение анатомии человека».

«Ткани человека» - Хрящевая ткань. Жировая ткань. Порядок работы: Эпителий молочной железы включает клетки кубической формы, выделяющие молоко. Железистый эпителий. Демонстрационная лабораторная работа. Клетки самого нижнего слоя (слева) деляться, обновляя ткань. Эпителий молочной железы. Таблица. Верхний слой отмерших клеток (справа) постоянно слущивается.

«Ткани растений» - Служат для сохранения питательных веществ. Для газообмена и транспирации в пробке формируются чечевички. Клеточные стенки неравномерно утолщены. Трахеиды. Повторение. Ситовидные трубки. Перечислите основные виды покровных тканей. Возникают на базе первичных. Чаще встречаются у высших споровых и голосеменных растений.

«Лабораторные работы по Windows» - Разработка пользовательских форм в VBA. Excel. Вставка и редактирование рисунков, схем и чертежей Лабораторная работа №3_1. Работа с окнами и приложениями в Windows. Windows. WORD. Создание баз данных. Форматирование текста в редакторе Word. Разделы курса. Создание и редактирование диаграмм в документах word.

ID: 2015-07-6-A-5344

Оригинальная статья

Калмин О.В., Венедиктов А.А.*, Никишин Д.В., Живаева Л.В.*

ФГБОУ ВПО Пензенский государственный университет Минобрнауки России; * Общество с ограниченной ответственностью «Кардиоплант»

Резюме

Цель : разработка метода химико-ферментативной обработки ксеноперикарда с целью получения нового материала с низкой биорезорбцией. Методы. Материалом исследования были образцы ксеноперикарда, обработанные стандартным и модифицированным химико-ферментативными методами. Часть образцов ксеноперикарда подвергали исследованию механических свойств. Другая часть образцов имплантировалась экспериментальным животным. Сроки имплантации составили 2 недели, 1 и 2 месяца. После выведения животных из эксперимента производилось гистологическое исследование образцов. Результаты. Установлено, что ксеноперикардиальная пластина, обработанная модифицированным методом, обладает более высоким модулем упругости, большей прочностью и меньшей растяжимостью, в отличие от материала, обработанным запатентованным химико-ферментативным методом. Повышение прочности и упругости, но снижение растяжимости образцов экспериментальной группы связано с обработкой глутаровым альдегидом в более высокой концентрации. В связи с этим биодеградация и биоинтеграция в образцах, подвергшихся стандартной обработке, активно выявляются уже в конце первого месяца после имплантации, в отличие от ксеноперикарда, обработанного модифицированным способом, у которого данные процессы проявляются к концу второго месяца. Заключение . Изучение деформативно-прочностных свойств и микроморфологии ксеноперикардиальной пластины на разных этапах эксперимента подтверждает, что модернизированный метод химико-ферментативной обработки ксеноперикарда позволяет создать биоматериал, обладающий лучшими упруго-эластическими характеристиками и характеризующийся более низкой скоростью биорезорбции и замещения собственной соединительной тканью реципиента.

Ключевые слова

Ксеноперикард, тканевая инженерия, химико-ферментативная обработка, биорезорбция, механические свойства

Введение

О.В. Калмин - ФГБОУ ВПО Пензенский государственный университет Минобрнауки России, кафедра анатомии человека, заведующий кафедрой, доктор медицинских наук, профессор; А.А. Венедиктов - Общество с ограниченной ответственностью «Кардиоплант»; Д В. Никишин - ФГБОУ ВПО Пензенский государственный университет Минобрнауки России, кафедра анатомии человека, доцент, кандидат медицинских наук; Л.В. Живаева - Общество с ограниченной ответственностью «Кардиоплант».

На современном этапе развития в реконструктивной медицине одной из наиболее актуальных является проблема подбора материалов для проведения реконструктивных хирургических манипуляций.

Хорошо известно, что «идеальный» трансплантат должен отвечать следующим требованиям: не приводить к воспалительной реакции; не оказывать токсического и иммуногенного действия; должен сохранять заявленные свойства как на этапе хранения, так и в организме, в который он был имплантирован; обладать способностью к физиологической деградации с образованием безопасных продуктов распада; обладать необходимой скоростью деградации, соответствующей процессам образования новой соединительной ткани; давать возможность нанесения биологически активных веществ на его поверхность; должен обладать эффективной и универсальной возможностью стерилизации; иметь длительные сроки хранения.

Наиболее часто в клинической медицине для трансплантации используют следующие основные виды материалов: аутотрансплантаты, аллотрансплантаты и синтетические материалы.

Аутотрансплантаты - это собственные ткани организма пациента. Этот материал имеет значительный плюс, он высоко биосовместим, но при проведении хирургических манипуляций с его использованием врачу приходится забирать материал и, как следствие, травмировать пациента, что увеличивает период реабилитации пациента .

Аллотрансплантаты - это ткани и органы, взятые от донора (человека). В качестве донора может выступать трупный материал. Данный материал труднодоступен, т.к. в Российской Федерации практически отсутствуют банки с алломатериалами. При этом такой материал может нести в себе риск заражения различными инфекциями, что является недопустимым в клинической медицине .

Синтетические материалы широко распространены в практической медицине, имеют относительно небольшую стоимость, но обладают малым уровнем биоинтеграции и довольно часто отторгаются .

Ксенотрансплантаты - это ткани и органы, которые взяты от животных. Их использование началось еще в конце XX века, однако они редко использовались из-за несовершенной методики изготовления ксеноматериала: оставшиеся в материале клетки запускали иммунный ответ, что способствовало отторжению имплантатов.

Основной причиной антигенности являются клетки ксеноматериала, а также глизоамингликаны. Именно поэтому в процессе подготовки необходимо разрушить клетки и вывести их из материала. Суть наиболее распространенного метода обработки ксеноперикарда, использующегося на данный момент (Патент на изобретение РФ № 2197818 от 28.10.2008 г.), состоит в том, что фермент разрушает носители антигенности, а вследствие обработки ткани гипертоническими растворами хлорида натрия фрагменты клеток удаляются из материала. При этом волокна соединительной ткани остаются незатронутыми и сохраняют свою структуру, а дальнейшая обработка глутаровым альдегидом превращает ткань ксеноматериала в биополимер. Однако данный метод не лишен недостатков и требует дальнейшего развития и оптимизации.

Цель

Целью настоящего исследования явилась разработка метода химико-ферментативной обработки ксеноперикарда с целью получения нового материала с низкой биорезорбцией.

Материал и методы

Взятие ксеноперикарда производилось не позднее 20 минут с момента забоя животного. Полученный перикард погружался в физиологический раствор и доставлялся в лабораторию для дальнейшей обработки. Образцы были разделены на 2 группы: опытную и контрольную. В каждой группе исследовалось по 20 образцов ксеноперикарда.

Контрольная группа была обработана стандартным методом (Патент РФ № 2197818 от 28.10.2008 г.). Опытную группу образцов ксеноперикарда подвергали действию протеолитического фермента при различных режимах: изменяли время обработки, концентрацию протеолитического фермента, температуру при обработке, уровень рН, а также концентрацию сшивающего агента, в качестве которого служил раствор глутарового альдегида. Подобная модель ткани, будучи относительно «сильно зашитой», в теории должна обладать пониженной скоростью биоразложения. В конце обработки ксеноперикарда проводился гистологический контроль материала на наличие клеточных элементов и сохранность коллагеновых и эластических волокон ксеноперикарда.

На половине образцов из каждой группы изучали деформативно-прочностные свойства биоматериала. Исследование проводили на испытательной машине INSTRON-5944 BIO PULS, при этом изучались: максимальная нагрузка, максимальная относительная деформация, модуль упругости, напряжение при растяжении при максимальной нагрузке. Во время измерений образцы смачивались в физиологическом растворе.

Оставшиеся 10 образцов из каждой группы имплантировали экспериментальным животным. При проведении эксперимента соблюдались положения Европейской Конвенции по защите экспериментальных животных (1986 г.). В качестве экспериментальных животных выступали белые крысы породы Wistar массой до 260 г. Экспериментальных животных содержали на обычной диете. Экспериментальную модель создавали путем имплантации образцов материалов животным под кожу в область межлопаточного пространства. Операция проводилась в условиях стерильности под масочным эфирным наркозом. Подкожные полости формировали тупым способом с помощью стерильного шпателя. Разрез ушивали рассасывающейся нитью. Срок имплантации составил 2 недели, 1 месяц и 2 месяца. По истечении сроков образцы из каждой экспериментальной группы извлекали и производили гистологический анализ материала. Образцы тканей фиксировали в нейтральном 10%-ном формалине, проводили через батарею спиртов возрастающей концентрации и заливали в парафин. Парафиновые срезы толщиной 5-7 мкм окрашивали гематоксилином-эозином и по методу Вейгерта-Ван-Гизона. Используя микроскоп с цифровой фото насадкой, разрешением 7 мегапикселей с каждого гистологического препарата было получено по три фотографии. На микрофотографиях изучали: состояние коллагеновых и эластических волокон; наличие и характер клеточных элементов; наличие новообразованных кровеносных сосудов; явления биоинтеграции и биодеградации; наличие и степень воспалительной реакции.

Результаты

Исследование деформативно-прочностных свойств. Исследование выявило, что образцы ксеноперикардиальной пластины, обработанные запатентованным и экспериментальным методами, имеют различные деформативно-прочностные свойства (табл. 1).

Модуль упругости (модуль Юнга) пластин ксеноперикарда экспериментальной группы был выше в 1,52 раза, чем в контрольной группе. Наоборот, максимальная относительная деформация образцов экспериментальной группы была ниже в 1,32 раза по сравнению с контрольной. Образцы экспериментальной группы обладали более значительной прочностью по сравнению с контрольной группой, прошедшей запатентованную обработку (в 1,36 раза). Повышение прочности и упругости, но снижение растяжимости образцов экспериментальной группы связано с обработкой глутаровым альдегидом в более высокой концентрации. В результате такой обработки происходит образование большего количества поперечных сшивок между коллагеновыми волокнами. Вследствие этого коллагеновая сеть становилась более плотной, а весь ксеноматериал становится более прочным и упругим, но менее растяжимым.

Значение напряжения при максимальной нагрузке в контрольной группе незначительно отличалось от аналогичного показателя экспериментальной группы. Следовательно, такой вид модификации ксеноперикардиальной пластины не оказывает сильного влияния на распределение сил между волокнами при приложении нагрузки в виде одноосного растяжения.

Микроскопическое исследование.

1. Обработка ксеноперикарда стандартным методом. При гистологическом исследовании контрольных образцов ксеноперикарда, прошедших стандартную обработку, было установлено, что при окраске гематоксилином и эозином клеточные элементы не выявлялись; при окраске по методу Вейгерта-Ван-Гизона, несмотря на обработку ксеноперикарда агрессивными веществами и разрушение клеточных элементов, состояние эластических и коллагеновых волокон оставалось без изменений.

При исследовании ксеноперикарда на 14-е сутки после имплантации при окраске гематоксилином и эозином отмечались было установлено, что в 2 образцах имелась слабо выраженная лимфогистиоцитарная инфильтрация (в среднем на 2/3 от общей толщины ксеноперикардиальной пластины) с включением эпителиоидных клеток и клеток фибропластического ряда, в 1 образце - умеренно выраженная лимфогистиоцитарная инфильтрация. Вокруг имплантированных образцов ксеноперикарда сохранялась умеренная клеточная инфильтрация, наблюдалось образование грануляционной ткани с единичными новообразованными сосудами (рис. 1).

Рис. 1. Контрольные образцы ксеноперикарда (а - ксеноперикард, обработанный стандартным методом, окраска гематоксилином-эозином, х200; б - ксеноперикард, обработанный стандартным методом, окраска по Вейгерту-Ван-Гизону, х400; в - ксеноперикард, обработанный модифицированным методом, окраска гематоксилином-эозином, х200; г - ксеноперикард, обработанный модифицированным методом, окраска по Вейгерту-Ван-Гизону, х400)

При анализе гистологических препаратов, окрашенных по Вейгерту-Ван-Гизону, выявлено частичное разрушение коллагеновых и эластических волокон, что свидетельствует об активных процессах биодеградации исследуемого фрагмента ксеноперикарда.

К концу первого месяца эксперимента в местах прилегания трансплантата к тканям реципиента отмечались выраженные пролиферативные процессы. Ксеноперикардиальная пластина имела однородную структуру, по наружной поверхности была инфильтрирована лимфоцитами и гистиоцитами. Пластина была окружена выраженным инфильтрационным валом. В составе клеточного инфильтрата встречались плазматические клетки, лимфоциты, гистиоциты, клетки фибробластического ряда. В области контакта с материалом преобладают лимфоциты и гистиоциты, на периферии грануляционного вала - пролиферирующие фибробласты и очаги новообразованного коллагена. В зоне вокруг ксеноперикарда определялись новообразованные кровеносные сосуды. При окраске по Вейгерту-Ван-Гизону выявлялись формирующиеся собственные коллагеновые и эластические волокна.

Через 2 месяца после начала эксперимента на поверхности материала отмечались явления биодеградации. Было обнаружено практически полное врастание собственной соединительной ткани и новообразованных сосудов, значительное уменьшение количества лимфоцитов и макрофагов в инфильтрате. Фибробласты активно синтезировали соединительнотканный каркас вокруг трансплантата. При окраске по Вейгерту-Ван-Гизону определялось большое количество новообразованных собственных коллагеновых и эластических волокон. Подобные изменения свидетельствовали об активном процессе биодеградации ксеноперикардиальной пластины и интеграции в нее собственной соединительной ткани с дальнейшим полным замещением имплантата (рис. 2).

Рис. 2. Ксеноперикард, обработанный стандартным методом, (а - 14-е сутки, окраска гематоксилином-эозином, х200, б - 14-е сутки, окраска по Вейгерту-Ван-Гизону, х400; в - 30-е сутки, окраска гематоксилином-эозином, х200; г - 30-е сутки, окраска по Вейгерту-Ван-Гизону, х400; д - 60-е сутки, окраска гематоксилином-эозином, х200; е - 60-е сутки, окраска по Вейгерту-Ван-Гизону, х400)

2 . Обработка ксеноперикарда модифицированным методом. При гистологическом исследовании контрольных образцов ксеноперикарда, обработанных модифицированным методом, было выявлено, что при окраске гематоксилином-эозином клеточные элементы не выявлялись; при окраске по Вейгерту-Ван-Гизону состояние эластических волокон и коллагеновых волокон оставалось без изменений, но они имели более рыхлое пространственное расположение.

При гистологическом исследовании ксеноперикарда на 14-е сутки в образцах при окраске гематоксилином-эозином выявлялась умеренная лимфогистиоцитарная инфильтрация: в одном образце отмечались процессы инкапсуляции, в остальных образцах лейкоциты проникали на 1/3 от общей толщины пластины.

При анализе препаратов, окрашенных по Вейгерту-Ван-Гизону, отмечалось частичное разрушение коллагеновых и эластических волокон на всю глубину лимфогистиоцитарной инфильтрации, а в толще ксеноперикардиальной пластины наблюдались коллагеновые и эластические волокна без изменений, что говорит о слабо активных процессах биодеградации исследуемого объекта.

К концу 1-го месяца эксперимента в тканевом ложе трансплантата отмечаются выраженные пролиферативные процессы. Материал трансплантата имел однородную структуру, по поверхности был инфильтрирован лимфоцитами и гистиоцитами. Трансплантат был окружен выраженным инфильтрационным валом. В составе клеточного инфильтрата выявлялись лимфоциты, гистиоциты, плазматические клетки, клетки фибробластического ряда. В области контакта собственных тканей с материалом имплантата преобладали лимфоциты и гистиоциты, по периферии грануляционного вала - пролиферирующие фибробласты и очаги новообразованного коллагена. В реактивной зоне вокруг ксеноперикарда выявлялись новообразованные кровеносные сосуды. При окраске по Вейгерту-Ван-Гизону были найдены формирующиеся собственные коллагеновые и эластические волокна.

Через 60 суток обнаруживались явления биодеградации материала на наружной его поверхности, было выявлено практически полное прорастание в пластину собственной соединительной ткани и новообразованных сосудов. Отмечалось значительное уменьшение количества лимфоцитов и макрофагов в воспалительном инфильтрате. Пролиферирующие фибробласты активно формировали соединительнотканный каркас вокруг трансплантата.

При окраске по Вейгерту-Ван-Гизону выявлялось значительное количество собственных коллагеновых и эластических волокон. Выявленные тканевые изменения подтверждали наличие активного процесса биодеградации ксеноперикарда и интеграции в него собственной соединительной ткани с последующим замещением ксеноперикарда (рис. 3).

Рис. 3. Ксеноперикард, обработанный модифицированным методом (а - 14-е сутки, окраска гематоксилином-эозином, х200; б - 14-е сутки, окраска по Вейгерту-Ван-Гизону, х400; в - 30-е сутки, окраска гематоксилином-эозином, х200; г - 30-е сутки, окраска по Вейгерту-Ван-Гизону, х400; д - 60-е сутки, окраска гематоксилином-эозином, х200; е - 60-е сутки, окраска по Вейгерту-Ван-Гизону, х400)

Обсуждение

Полученные в ходе проведенных экспериментальных исследований данные показывают, что ксеноперикардиальная пластина, обработанная модифицированным методом, обладает более высоким модулем упругости, большей прочностью и меньшей растяжимостью, в отличие от материала, обработанным запатентованным химико-ферментативным методом, меньше деформируется. Повышение прочности и упругости, но снижение растяжимости образцов экспериментальной группы связано с обработкой глутаровым альдегидом в более высокой концентрации. В результате такой обработки происходит образование большего количества поперечных сшивок между коллагеновыми волокнами.

В связи с этим биодеградация и биоинтеграция в образцах, подвергшихся стандартной обработке, активно выявляются уже в конце первого месяца после имплантации, в отличие от ксеноперикарда, обработанного модифицированным способом, у которого данные процессы проявляются к концу второго месяца. Полученные данные подтверждают довольно высокую эффективность применения модифицированной ксеноперикардиальной пластины в реконструктивных операциях, когда необходимо длительное сохранение механической прочности трансплантата.

Заключение

Изучение деформативно-прочностных свойств и микроморфологии ксеноперикардиальной пластины на разных этапах эксперимента подтверждает, что модернизированный метод химико-ферментативной обработки ксеноперикарда позволяет создать биоматериал, обладающий лучшими упруго-эластическими характеристиками и характеризующийся более низкой скоростью биорезорбции и замещения собственной соединительной тканью реципиента. Результаты исследования позволяют предположить большую эффективность применения ксеноперикардиального имплантата, обработанного модифицированным методом, для восстановления соединительной ткани реципиента. Эти ксеноперикардиальные пластины могут применяться как самостоятельный пластический материал для использования в реконструктивных операциях, требующих имплантаты с указанными свойствами, так и в качестве матрицы для нанесения стволовых клеток, используемых в генной инженерии.

Конфликт интересов. Работа выполнена в рамках приоритетного направления научно-исследовательской деятельности Пензенского государственного университета на 2011-2015 годы № 4 «Биомедицинский кластер».

Литература

  1. Сравнительный анализ использования аутотрансплантата из связки надколенника и учетверенного сухожильного трансплантата m. semitendinosus и m.gracilis для пластики ПКС // VIII конгресс Российского артроскопического общества: программа и тезисы / Д.С. Афанасьев, А.В. Скороглядов, С.С. Копенкин, А.Б. Бут-Гусаим, А.В. Зинченко, В.Ю. Розаев. СПб.: Изд-во «Человек и его здоровье», 2009. С. 104.
  2. Батпенов Н.Д., Баймагамбетов Ш.А., Раймагамбетов Е.К. Реконструкция передней крестообразной связки свободным аутосухожилием связки надколенника // VIII конгресс Российского артроскопического общества: программа и тезисы. СПб.: Изд-во «Человек и его здоровье», 2009. С. 104.
  3. Кузнецов И.А. Артроскопическая аутопластика передней крестообразной связки с использованием сухожилия полусухожильной мышцы // Сборник материалов зимнего Всероссийского симпозиума «Коленный и плечевой сустав - XXI век». М., 2000. С. 95-97.
  4. Демичев Н.П. Сухожильная гомопластика в реконструктивной хирургии. Ростов-на-Дону: Изд-во Рост. ун-та, 1970. 102 с.
  5. Кузнецов И.А., Волоховский H.H., Рябинин М.В. Применение аллотрансплантатов при артроскопической реконструкции ПКС коленного сустава // Сборник материалов 2-го конгресса РАО. М., 1997. С. 23.
  6. Кузьмина Ю.О., Королев А.В., Дедов С.Ю. Анализ осложнений, возникающих после артроскопической пластики передней крестообразной связки аллотрансплантатом из связки надколенник // РУДН, ГКБ № 31. М., 2004. С. 56.
  7. Burri C. Grundlagendes Kniebandersatzesdurch Kohlenstoff // Unfallheilkunde. 1980. Bd. 83. S. 208-213.
  8. Klein W. Die arthroskopis chevordere Kreuzbandplastikmit Semitendinosuss chlinge, verstaerktdurch Kennedy-LAD // Arthroskopie. 1990. Bd. 3. S. 7-14.
  9. 0

    Ваша оценка: Нет

Цель работы: Изучить группы свойств тканей.

Материалы для работы:

Время работы - 4 часа

Задание. Изучить свойства ткани. Провести исследования по определению показателей свойств образцов ткани.

К этим свойствам относятся гигроскопичность, воздухопроницаемость, паропроницаемость, водоупорность, пылеемкость, электризуемость.

1. Определение гигроскопичности ткани.

Гигроскопичность характеризует способность ткани впитывать влагу из окружающей среды (воздуха). Гигроскопичностью назы­вают влажность ткани при 100 %-й относительной влажности воз­духа и температуре 20±2 0 С. Гигроскопичность W г %, определяют по результатам взвешивания увлажненного и сухого образцов, ис­пользуя формулу

W г = (m 100 - m с) ´ 100/m с,

где m 100 - масса образца, выдержанного в течение 4 ч при относительной влаж­ности 100 %, г;

т с - масса абсолютно сухого образца, г.

2. Определение воздухопроницаемости ткани.

Воздухопроницаемость - способность ткани пропускать через себя воздух. Она характеризуется коэффициентом воздухопроница­емости В Р, который показывает, какое количество воздуха прохо­дит через единицу площади в единицу времени при определенной разнице давлений по обе стороны ткани. Коэффициент воздухопроницаемости В p , дм 3 /(м 2 с), подсчиты­вается по формуле:

где V- количество воздуха, прошедшего через материал, дм 3 ;

S- площадь ма­териала, м 2 ;

t - длительность прохождения воздуха, с.

Стандартный метод определения воздухопроницаемости пре­дусматривает применение приборов.

3. Определение электризуемости ткани.

Электризуемость имеет немаловажное значение для комплекс­ной физиолого-гигиенической оценки текстильных изделий, осо­бенно содержащих химические волокна и нити. Процесс генера­ции изделием зарядов статического электричества называется элек­тризацией. Свойство материала генерировать заряды статического электричества носит название электризуемости.

Стандартным в нашей стране является метод определения удель­ного поверхностного электрического сопротивления на приборе ИЭСТП.

Литература

Лабораторная работа 11 Анализ пороков текстильных материалов

Цель работы

Освоение основных методов распознавания вида текстильных волокон. Органолептический метод.

Материалы для работы: лупа, микроскоп, ножницы, образцы тканей и трикотажа, контрольные образцы, наглядный материал.

Время работы - 2 часа

Задание: Исследовать волокна ткани органолептическими методами.

Все пороки текстильных материалов подразделяют на три группы:

· пороки волокон и нитей;

· пороки ткачества;

· пороки отделки.

На рис. 11-13 и в табл. 47 приведены наиболее распространенные дефекты волокон, их характеристика и причины возникновения.

Рис. 11. Виды сорных примесей и пороков хлопкового волокна:

а – жгутики, б – комбинированные жгутики, в – пластинки незрелых волокон, г – незрелые семена, д – сорные примеси, е – кожица с волокном

Рис. 12. Виды пороков и сорных примесей чесаного льна:

а, б – шишки, в – костра, г - недоработки

Рис. 13. Пороки вискозных волокон:

а – склейка, б – грубые волокна, в – роговидные волокна (колючки), г - мушки

Таблица 47

Основные виды дефектов волокон

Наименование дефектов Причины возникновения и характеристика
Незрелые волокна Дефект хлопка. У волокон тонкие стенки, лентообразная форма, широкий канал, отсутствие извитости
Галочки Оставшиеся после очистки хлопка мелкие кусочки коробочек хлопчатника просматриваются на поверхности тканей в виде мелких темных точек
Закостренность Дефект льняных волокон, засоренных кострой
Шишки Спутанные в процессе обработки комки волокна, уплотненные у льна, рыхлые у шелка
Засореность шерсти Шерсть животных засорена репьем и другими растительными примесями (лопух, ковыль, чертополох и др.), а также перхотью
Переследы Местное утонение волокна шерсти, вызванное голоданием или болезнью животных
Мертвый волос Грубое, слабое, бесцветное и ломкое волокно, не поддающееся свойлачиваниюи крашению
Моховатость (ворсистость) В процессе излишних механических воздействий шелковые волокна раздавливаются и распадаются на более мелкие компоненты (фибриллы) и делаются ворсистыми
Склейки Прочное склеивание нескольких элементарных волокон вискозного штапельного волокна
Жгутики Слабо склеенные пучки элементарных волокон штапельного вискозного волокна

В группе пороков ткачества выделяют три подгруппы: пороки по основе, пороки по утку, общие пороки изделия; в группе пороков отделки – 4 подгруппы: предварительной отделки, пороки гладкого крашения, пороки набивки, пороки заключительной и специальной отделок.

Наиболее часто встречающиеся пороки внешнего вида тканей приведены в табл. 48.

Таблица 48

Пороки внешнего вида тканей

Порок Вид порока Описание Этап производства, на котором возникает порок
Засоренность Распро-страненный Наличие костры на по­верхности льняных тка­ней и репья на шерстяных Прядение
Шишковатость » Наличие на поверхнос­ти тканей коротких утолщений пряжи в ре­зультате скопления во­локон »
Зебристость » Наличие на поверхнос­ти ткани прочно закреп­ленных небольших ко­мочков перепутанных волокон Ткачество
Утолщенная нить Местный Наличие нитей основы или утка, имеющих бо­лее высокую линейную плотность, чем нити ос­новного фона ткани »
Близна » Отсутствие одной или нескольких нитей осно­вы »
Пролет » Отсутствие одной или нескольких нитей утка по всей ширине ткани или на ограниченном участке »
Подплетина » Наличие рядом лежа­щих неправильно переплетенных и оборванных нитей по основе и утку на небольшом участке »
Забоина » Полосы во всю ширину ткани вследствие повы­шенной плотности по утку »
Недосека » То же вследствие пони­женной плотности по утку »
Ворсовая плешина Распространенный Отсутствие ворса на ог­раниченном участке ткани »
Перекос » Неперпендикулярное расположение нитей ос­новы к нитям утка »
Разноот-теночность » Разная интенсивность окраски или печати Печатание
Щелчок Местный Наличие окрашенного участка небольшого размера и неопределен­ной формы, образовав­шегося от попадания под раклю пуха, ниток »
Засечка » Отсутствие рисунка на ткани вследствие обра­зования складки во вре­мя на-несения рисунка »
Растраф рисунка Распро-страненный Смещение отдельных де­талей рисунка на ткани »

Результаты выполнения задания оформите в виде таблицы 49:

Таблица 49

Результаты исследования образцов

Контрольные вопросы

1. Что такое ткацкое переплетение? Назовите классы ткацких пере­плетений.

2. Каким переплетением вырабатывают ситец, кашемир, сукно, бархат?

3. Как называется полушерстяная ткань с рисунком в полоску или в клетку комбинированного переплетения? Как составляют раппорт комбинированного переплетения?

4. Что такое плотность ткани? Какие характеристики плотности Вы знаете? Как изменяются свойства ткани в зависимости от плотности?

5. Что такое фазы строения ткани? Что влияет на фазу строения ткани?

6. Как определить лицевую и изнаночную стороны ткани? направление основы и утка ткани?

7. Какие характеристики геометрических свойств ткани Вам известны? Как определяют длину, ширину, толщину ткани?

8. Что такое поверхностная плотность ткани? Чем отличаются показатели плотности и поверхностной плотности ткани?

9. Какие разрывные характеристики тканей Вы знаете?

10. От чего зависят жесткость и драпируемость ткани? Какими методами определяют драпируемость ткани?

11. Что такое сминаемость ткани? От чего она зависит? На что влияет сминаемость ткани?

12. Что такое раздвижка нитей ткани, осыпаемость ткани? От чего они зависят? Как они влияют на процессы изготовления одежды?

13. Дайте определение гигиенических свойств ткани. Назовите характе­ристики гигиенических свойств.

14. Дайте характеристику износостойкости ткани. Какие методы определения износостойкости Вы знаете? От чего зависит износостойкость ткани?

Литература

1. Вилкова, С.А Экспертиза потребительских товаров: Учебник. –М,: Издательско-торговая корпорация «Дашков и К», 2012.-284 с.

2. Лифиц И.М. Стандартизация, метрология и сертификация: Учебник. / И.М. Лифиц. – М.: Юрайт-Издат, 2004. – 335 с.

3. Неверов, А.Н. Идентификационная и товарная экспертиза одежно-обувных и ювелирных товаров / А.Н. Неверов, Е.Л. Пехташева, Е.Ю. Райкова / Учебник. – М.: ИНФРА-М, 2012. – 472с. – (Высшее образование)

4. Товароведение и экспертиза промышленных товаров: учебник / под ред. проф. А.Н. Неверова. – М.: МЦФЭР, 2006. – 848 с.

характеристик: фактической и поверхностной плотности;

механических свойств»

Цель работы:

1. Определить размерные характеристики ткани: линейную плотность, поверхностную плотность; основные структурные характеристики.

2. Определить механические свойства ткани.

Выполнение работы:

Определение фактической плотности ткани

Таблица 8

1. Определение линейной плотности ткани (основных (То) и уточных (Ту) нитей).

2. Определение относительной плотности ткани по формуле 1 и 2 (если линейная плотность основных и уточных нитей разная):

, Еу = (2)

где С – коэффициент равный для х/б - 83-100; для шерсти - 74-80,

штапельная вискозная пряжа - 80, НВис - 83, НШС – 100;

По, Пу – фактическая плотность нитей по основе и утку;

То, Ту – линейная плотность нитей основы и утка.

3. Вычислить поверхностное заполнение ткани (Еs) по формуле 3:

4. Вычислить поверхностную плотность ткани по формуле 4:

G = 0,01*(То*По + Ту*Пу), г/м 2 (4)

5. Определение драпируемости по методу ЦНИИ шелка (метод иглы).

5.1. Вычислить коэффициент драпируемости в % относительно по основе и утку по формуле 5:

Д=(200-А)*100/200 (5)

5.2. Сравнительный анализ результатов: ________________________________

6. Определение прочности ткани при растяжении. ________________________

_________________________________________________

7. Определение сминаемости ткани.

7.1. Отметить, что повлияло на сминаемость данной ткани?

___________________________________

8. Ответы на контрольные вопросы.

1. Как влияет поверхностная плотность ткани на ее свойства и назначение?

_____________________

2. Что такое жесткость ткани? _________________________________________

_____________________

3. Факторы, влияющие на жесткость ткани. ______________________________

____________________________

4. Влияние жесткости, драпируемости, сминаемости на выбор модели одежды.

____________________________

· Оценка и комментарии преподавателя.

Практическое занятие № 8

Тема: «Определение технологических свойств тканей »

Цель работы:

1. Изучить технологические свойства определенных проб тканей.

2. Отметить влияние технологических свойств тканей на все стадии швейного производства.

Выполнение работы:

1. Определить основу и уток, лицевую и изнаночную стороны проб тканей и охарактеризовать фактуру лицевой поверхности.

2. Охарактеризовать пряжу (нити) по способу прядения, строению, величине крутки.

3. Определить волокнистый состав по основе и по утку.

4. Определить (примерно) поверхностное заполнение ткани (Еs) и поверхностную плотность (G); ткацкое переплетение; особенности отделки ткани. Данные исследований занести в таблицу 10.

Характеристика ткани

Таблица 10

5. Определить технологические свойства пробы ткани.

5.1. Скольжение ткани________________________________________________

5.1.1. Что повлияло на скольжение ткани? _______________________________

_____________________

5.1.2. Как учитывается скольжение в раскройном производстве?____________

_____________________

5.2. Сопротивление ткани резанию _____________________________________

5.2.1. Отметить, как повлияет это свойство на процессы раскроя.____________

_____________________

5.3. Сжимаемость ткани охарактеризовать большой или меньшей степенью.

5.3.1. Отметить, что повлияло на сжимаемость данной ткани. _______________

5.3.2. Как влияет сжимаемость данной ткани на износостойкость и расход швейных ниток? ________________________________________________________

____________________________

5.4. Осыпаемость ткани ______________________________________________

5.4.1. Что повлияло на осыпаемость конкретной пробы ткани?

____________________________

5.4.2. Что предусмотрено для укрепления шва в изделии, изготавливаемом из данной ткани? __________________________________________________________

_____________________

5.5. Раздвигаемость нитей в швах______________________________________

5.5.1. Что повлияло на раздвигаемость нитей в швах? ______________________

_____________________

5.6. Определение прорубаемости материалов.

Пя= 100*(Нр/Ко), (6)

Где Ня – явная прорубаемость,%

Нр – число разрушенных нитей,

Ко – число проколов иглы по всей длине строчки.

5.6.2. Анализ причин прорубаемости испытываемого материала и рекомендации по снижению явной прорубаемости. ____________________________________

_____________________

5.6.3. Окончательно установить номера игл и ниток для данной пробы ткани.

_____________________

5.7. Изучить методику определения усадки ткани.

5.7.1. Усадку ткани вычисляют отдельно по основе и утку по формулам 7, 8:

Уо=100(L1-L2)/L1, % , где (7)

Уу=100(L1"-L2")/L1" (8)

L1, L1"- первоначальная размеры образца по основе и утку

L2, L2"- размеры образца по основе и утку после замачивания и высушивания.

Примечание: Этот пункт практической работы выполняется как домашнее задание.

Размеры проб 300*300 мм и на них карандашом наносят контрольные метки. Затем карандашные метки обводят несмываемой краской или прошивают нитками. Стирку производить при температуре примерно 40 о С со стиральным порошком в стиральной машине. Затем отжать и прополоскать при температуре 20-25 о С и снова отжать. Отжатые образцы гладят через неаппретированную хлопчатобумажную ткань электроутюгом, нагретым до температуры 200 о С. Утюг можно передвигать в разных направлениях, но без нажима. После глажения образцы выдерживают в нормальных условиях. Расстояние между контрольными метками измеряют с точностью до 1мм и подсчитывают среднее арифметическое с точностью до 0,1 мм. Эти данные используют для вычисления величины усадки.

5.7.2. Сделать выводы по усадке ткани. Какие факторы повлияли на ее величину? ___________________________________________________________________

__________________________________________

5.8. Определить по пробе ткани ее способность к формообразованию при ВТО в зависимости от волокнистого состава, структуры (плотности, переплетения), характера отделки и вида нитей. _______________________________

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

ткань нить волокнистый

Ткань - текстильное изделие, измеряемое соответствующей мерой (длина, ширина, площадь), образованное на ткацком станке переплетением взаимно перпендикулярных систем нитей. Мировой экономический кризис оказал большое влияние на развитие текстильной промышленности, многим компаниям пришлось уйти с рынка из-за отсутствия средств и современной материально-технической базы. Кризис прошел, и развитие текстильной промышленности получило новый виток. Компании стали активно внедрять новые технологии в производство тканей, которые смогут наиболее полно удовлетворить потребности покупателей. Сейчас на рынке России существует большое количество предприятий, предлагающих широкую ассортиментную линейку тканей, соответствующую вкусам самых требовательных покупателей. Современный рынок текстиля предлагает бесконечное многообразие вариантов, при которых можно комбинировать те или иные материалы, и создавать разные по стилистике интерьеры - от классики до постмодернизма. Современные тенденции определяются, прежде всего, новыми технологиями изготовления тканей: совмещение натуральных волокон с синтетическими; вытравливание рисунка кислотой, в результате чего получается, например, льняная ткань со вставками из прозрачной органзы или металлизированной сетки; применение нетканых материалов, таких как фетр, или напоминающих прозрачную многослойную бумагу. Декор на тканях стал совсем необычным. Все чаще имитируется ручная работа: нашиваются стразы на тюль или сетку, всевозможные легкие, воздушные листики, квадратики и колечки, бантики, кисточки, металлические нитки, создающие произвольный рисунок, и т.п.

Целью моей работы является анализ образца ткани.

Задачи:

1. рассмотреть особенности образца ткани;

2. сделать выводы по письменной экзаменационной работе на основе проанализированного в работе материала.

1. Определение волокнистого состава ткани

По волокнистому составу ткани бывают:

1. О днородные - ткани, в состав которых входит один вид волокон или нитей. Однородные ткани бывают хлопчатобумажные, чистольняные и т.д.

2. Смешанны е - ткани, имеющие в составе основы и утка различные волокна, соединенные в процессе прядения.

3. Неоднородны е - ткани, у которых основа и уток состоят из разных видов волокон. Например, основа ткани хлопчатобумажная, а уток льняной.

Методы определения волокнистого состава ткани

Органолептическим называется способ, при котором волокнистый состав тканей устанавливают, пользуясь органами чувств - зрением, обонянием, осязанием.

Оценивают внешний вид ткани, ее сминаемость, характер обрыва пряжи или нити, характер горения нитей основы и утка, запах при горении нитей основы и утка, остаток после сгорания нитей.

Внимательно рассматривают ткань с лицевой и изнаночной сторон, обращая внимание на ее цвет, блеск, пушистость, толщину и плотность. Проводят ручную пробу на смятие. Ткань сильно сжимают в кулаке. Через 30 секунд отпускают и разглаживают рукой. Анализируют степень смятости и характер образовавшихся складок. Выдергивают из образца основные и уточные нити. Рассматривают отдельно нити основы и нити утка, сравнивают их внешний вид. Нити раскручивают и оценивают по длине, толщине, цвету, блеску, извитости. Каждую из исследуемых нитей обрывают и оценивают характер обрыва. Поджигают нить и наблюдают характер горения. Оценивают цвет пламени, наличие копоти, запах, горение в пламени и вне пламени, плавление, исследуют остаток после сжатия.

Лабораторным называется способ при котором распознавание проводят с помощью приборов и химических реактивов.

Микроскопический метод заключается в том, что волокнистый состав ткани определяют при рассматривании под микроскопом.

Практическая часть.

Определяем волокнистый состав органолептическим способом.

Образец №1: Ткань является однородной, так как в состав входят только волокна льна. При обрыве на конце образуется удлиненная кисточка из различных по длине и толщине волокон. При раскручивании распадается на длинные блестящие различные по толщине волокна. При горении пахнет жженой травой, горит быстро, пламя желтое, волокна сгорают полностью, пепел серый.

Образец №2: Ткань является неоднородной, так как имеет в составе основы и утка различные синтетические волокна. При обрыве нить распадается на составляющие волокна. При горении плавиться.

2. Определение вид а ткацких переплетений

Переплетение определяет необходимую взаимосвязь нитей основы и утка в ткани и представляет собой порядок взаимного перекрытия нитей одной системы (основы) нитями другой системы (утка).

Различная последовательность переплетения основных и уточных нитей создаст на поверхности ткани разнообразные рисунки. Так переплетения формируют внешний вид ткани.

Переплетения нитей основы и утка обычно рассматривают с лицевой ткани, которая отличается лучшим внешним видом.

Графическое изображение переплетения ткани называют схемой переплетения .

Каждая клетка представляет собой пересечение основных и уточных нитей и называется перекрытием.

Наименьшим числом нитей, после которых повторяется рисунок или порядок их переплетения, определяется раппортом переплетения (R ).

Различают раппорт переплетения по основе Ro, и раппорт по утку Rу.

Различают 4 класса ткацких переплетений: простые или главные, мелкоузорчатые, сложные, крупноузорчатые.

Главные переплетения

Полотняное переплетение . Простейшее и наиболее распространенное, в которомс каждой нитью основы переплетается нить утка. Ткани полотняного переплетения имеют с лицевой и изнаночной стороны одинаковое число основных и уточных перекрытий. Схема полотняного переплетения напоминает шахматную доску. Полотняное переплетение широко применяют для выработки различных видов ткани:

в хлопчатобумажной промышленности - бельевые, платьевые, рубашечные ткани: бязь, ситец, шифон, батист, маркизет и т.д.

в льняной - бытовые и технические ткани, холсты, брезенты и т.д.

в шелковой - поплин, крепдешин, крем - жоржет, креп - шифон и т.д.

в шерстяной - различают суконные ткани.

Саржевое переплетение . В тканях саржевого переплетения первая нить основы перекрывает первую нить утка, вторая втору и т.д. Саржа может иметь различное число в раппорте, но не меньше 3 нитей.

Если на лицевой стороне ткани преобладают уточные перекрытия, то такая саржа называется уточной, если основные - основной.

Саржевые переплетения применяют для выработки тика, саржи, джинсы, подкладочных тканей, матрацных и технических тканей.

Сатиновое и атласное переплетения . Эти переплетения характеризуются рядом особенностей: одиночные перекрытия соседних нитей у них располагаются не рядом, как в сарже, а с определенным сдвигом. Сатиновое переплетение образует на лицевой стороне ткани длинные уточные перекрытия. Атласное переплетение образуют на лицевой стороне ткани длинные основные переплетения.

Ткани атласного переплетения вырабатывают лицевой стороной вниз.

Ткань атласного переплетения вследствие малого числа перекрещивания нитей имеют ровный, гладкий и блестящий вид.

Эти переплетения широко применяют при выработке сатина, атласа, костюмно-плательных и бытовых тканей, а также при выработке рисунков на льняных скатертях и покрывалах.

Мелкоузорчатые переплетения . Мелкоузорчатые переплетения - это наиболее многочисленный класс ткацких переплетений. Такие переплетения создают на тканях несложные рисунки в виде рубчиков, полос, квадратиков, ромбов, «елочек» и т.д. Размеры рисунков обычно не превышают 1 см. Производные переплетения образуются путем изменения, усложнения простых переплетений. Так, усиливая одновременно основные и уточные перекрытия полотняного переплетения, получают переплетение рогожка.

При усилении перекрытий полотняного переплетения в направлении основы или в направлении утка получают репсовые переплетения: основной репс и уточный репс. Производными полотняного переплетения вырабатывают костюмно-плательные льняные, хлопчатобумажные, некоторые шелковые и шерстяные ткани, а также многое другое. К производным саржевого переплетения относится усиленная, ломаная, обратная и сложная саржа.

К группе мелкоузорчатых переплетений относятся также комбинированные переплетения, которые получаются в результате перестановки перекрытий, наложения одного переплетения на другое, добавление новых перекрытий и т.д. Чаще всего применяют креповые, рельефные, вафельные, просвечивающие, продольно - и поперечнополосатые переплетения.

Комбинированными переплетениями вырабатывают костюмные и плательные ткани, полотенчатые холсты, скатерти и многое другое.

Сложные переплетения . К сложным переплетениям относятся такие переплетения, для построения которых требуется две и более систем нитей основы и утка. Каждая из систем располагается одна над другой, образуя слой ткани. Сложные переплетения получают на базе главных, производственных и комбинированных переплетений. В зависимости от строения и способа образования сложные переплетения подразделяют на: полутораслойные, двухслойные, многослойные, пике, ворсовые, ажурные или перевивочные, петельные или махровые.

Сложными переплетениями вырабатывают гобелены, махровые полотенца, покрывала.

Крупноузорчатые переплетения. В тканях с крупноузорчатыми переплетениями раппорт может быть очень большим достигать нескольких тысяч нитей. Применение крупноузорчатых переплетений дает возможность вырабатывать большие и разнообразные по форме тканые узоры, орнаменты, цветы и т.д. Крупноузорчатыми переплетениями вырабатывают скатерти, салфетки, покрывала, камчатные полотенца, декоративные, мебельные и портьерные ткани и многое другое. При выработке простых жаккардовых тканей используют главные, производные и комбинированные переплетения, т.е. в строении участвует одна система нитей основы и утка.

Практическая часть

Образец №1: Переплетение полотняное, так как каждая нить основы переплетает каждую нить утка. Схема полотняного переплетения напоминает шахматную доску.

Образец №2: Переплетение атласное, так как одиночные перекрытия соседних нитей у них располагаются на рядом, а с определенным сдвигом. На лицевой стороне ткани длинные основные перекрытия.

3. О пределение отделки и структуры поверхности ткани

По характеру отделки ткани бывают:

суровые - без какой-либо обработки после ткачества;

отбеленные - прошедшие обработку окислителями, содержащими хлор или перекись водорода;

гладкокрашеные - окрашенные равномерно в один цвет;

набивные - с цветным узором на лицевой стороне ткани;

пестротканые - из чередующихся цветных нитей;

меланжевые - из пряжи, в которой смешаны волокна разного цвета;

мерсеризованные - обработанные слабым раствором щелочи (NaOH);

отваренные - прошедшие специальную влажно-тепловую обработку.

В зависимости от структуры поверхности лицевой стороны, ткани делятся на:

г ладкими называются ткани, имеющие четкий рисунок переплетения (бязь, ситец)

в орсовыми называются ткани, имеющие на лицевой стороне разрезной вертикально стоящий ворс (бархат, плюш, велюр, вельвет);

в орсистыми называются ткани, имеющие на лицевой стороне ворс (начес), полученный в результате ворсования, т.е. вычесывания на поверхность ткани кончиков волокон уточных нитей (драпы, вельветы, бумазея);

в аляными называются ткани, прошедшие в процессе отделки - валку и имеющие на лицевой стороне войлокообразный застил (сукна, некоторые пальтовые ткани).

В зависимости от отделки ткани и вида ее лицевой и изнаночной сторон тк а ни делятся на:

Равносторонние - имеющие одинаковый вид с лицевой и изнаночной стороны. Разносторонние: а) Двухлицевые - ткани, имеющие различный вид с лицевой и изнаночной сторон, но пригодные для использования на ту, и на другую сторону. б) Однолицевые - ткани, которые оформляются только с лицевой стороны и не используются с изнаночной.

Практическая часть

Образец №1: По характеру отделки ткань пестротканая то есть состоит из чередующихся цветных нитей; равносторонняя, так как имеет одинаковый вид с лицевой и изнаночной стороны; по структуре поверхности гладкая, так как имеет четкий рисунок переплетения.

Образец №2: По характеру отделки ткань гладкокрашеная, то есть окрашена равномерно в один цвет; разносторонняя, однолицевая, так как оформляется только с лицевой стороны и не используются с изнаночной. По структуре поверхности ткань гладкая, имеет четкий рисунок переплетения.

4. Определение л ице вой и изнаночн ой сторон

1. ткацкие пороки (узелки, петельки) выводятся на изнаночную сторону;

2. печатные рисунки на лицевой стороне более яркие и четкие;

3. рисунок переплетения на лицевой стороне ткани более четкий;

4. в тканях саржевых и диагоналевых переплетений рубчик на лицевой стороне идет снизу вверх слева направо;

5. более дорогие нити в ткани выводятся на лицевую сторону;

6. ткацкий узор на лицевой стороне виден более отчетливо;

7. набивной рисунок наноситься на лицевую сторону;

8. если гладкую ткань рассматривать, подняв ее до уровня глаз, то можно заметить, что лицевая сторона менее пушистая, так как в процессе отделки она опаливается;

9. по кромке: с лицевой стороны кромка оформлена лучше, чем с изнаночной; проколы от шпаруток на изнаночной стороне больше, чем на лицевой стороне.

Практическая часть

Образец №1: Равносторонний, используется с обеих сторон.

Образец №2: Лицевая сторона ткани более блестящая и гладкая.

5. Определение расположения нитей основы и нитей утка

1. основа идет вдоль кромки;

2. основа растягивается меньше, а уток больше;

3. нити основы в ткани более тонкие и имеют большую крутку;

4. плотность основы (число нитей на 1 или 10 кв. см.) в большинстве тканей больше, чем плотность утка;

5. у тканей с начесом и в ворсовых тканях, направление начеса и ворса, всегда совпадает с направлением нитей основы;

6. при рассмотрении малоплотной ткани на просвет можно заметить, что основа располагается более равномерно и прямолинейно, чем уток;

7. в полульняных и полушерстяных тканях, основа обычно хлопчатобумажная;

8. в полушелковых тканях основа шелковая;

9. в шерстяных и хлопчатобумажных тканях, имеющих одну систему крученую, а вторую однониточную, основа обычно крученая.

Практическа я часть

Образец №1: основа растягивается меньше, а уток больше; нити основы в ткани более тонкие и имеют большую крутку.

Образец №2: основа растягивается меньше, а уток больше; нити основы в ткани более тонкие и имеют большую крутку.

6. Определение плотности ткани по основе и по утку

Под плотностью понимают число нитей основы или утка, приходящихся на 1 см 2 или 10 см 2 ткани.

Плотность является существенным показателем строения тканей. От плотности зависят масса, износоустойчивость, воздухопроницаемость, теплозащитные свойства, жесткость, драпируемость тканей. Каждое из этих свойств влияет на готовую одежду, а также на технологические процессы ее производства.

Практическая часть

Образец №1: плотность ткани я определяла с помощью ткацкой лупы, считала плотность на 1 см 2 . Плотность по основе - 15, по утку - 16.

Образец №2: плотность ткани я определяла с помощью ткацкой лупы, считала плотность на 1 см 2 . Плотность по основе -18, по утку - 19.

7. Определение о сновн ых свойств ткани

Геометрические свойства

Длину ткани определяют ее измерением в направлении нитей основы. При настилании ткани перед раскроем длина куска может увеличиваться в результате растяжения. Поэтому ткани с большой растяжимостью должны укладываться в настил с использованием специального настилочного оборудования без растяжения.

Ширина ткани - расстояние между краями ткани. Ее определяют измерением в направлении, перпендикулярном нитям основы. Ширину измеряют с кромками или без кромок.

Ширины выпускаемых тканей разнообразны: бельевых 60 - 100 см; платьевых 90 - 110 см; пальтовых 130 - 150 см.

Качество сырья, а также нарушение технологических режимов производства тканей приводит к тому, что кусок ткани на различных участках имеет разную ширину.

Толщина ткани колеблется в широких пределах: от 0,14 мм у очень тонких платьевых до 3,5 мм у очень толстых пальтовых.

Толщина ткани зависит от линейной плотности нитей (пряжи), переплетения, плотности, фаз строения и отделки тканей.

Применение нитей высокой линейной плотности, увеличение абсолютной плотности ткани, применение многослойных переплетений и такие операции отделки, как аппретирование, валка, ворсование, увеличивают толщину тканей, а опаливание, стрижка, прессование и каландрирование уменьшают ее.

Измерение толщины ткани производиться на специальном приборе - толщиномере.

Масса ткани выражается характеристикой, которую называют поверхностной плотностью. Поверхностная плотность изменяется для различных тканей от 12 до 760 г./м2. Наиболее легкими тканями являются газ и шифон, наиболее тяжелыми - шинельные сукна и драпы.

Отклонение фактической поверхностной плотности от установленной в нормативной технической документации является пороком, влекущим за собой изменения структуры ткани. Поверхностная плотность является показателем материалоемкости ткани и ее добротности.

Механические свойства тканей

В процессе эксплуатации одежды, а также при переработке ткани подвергаются разнообразным механическим воздействиям. Под этими воздействиями ткани растягиваются, изгибаются, испытывают трение.

Каждое из этих свойств описывается рядом характеристик:

- растяжение - прочностью на разрыв, разрывным удлинением, выносливостью и др.;

- изгиб - жесткостью, драпируемостью, сминаемостью и др.;

- изменение под действием трения - раздвижкой нитей, осыпаемостью и др.

Прочность на разрыв при растяжении ткани определяют по нагрузке, при которой образец ткани разрывается. Эта нагрузка называется разрывной нагрузкой , она является стандартным показателем качества ткани. Различают разрывную нагрузку по основе и разрывную нагрузку по утку. Разрывную нагрузку ткани определяют на разрывной машине.

Прочность тканей зависит от волокнистого состава, структуры и линейной плотности образующих ее нитей (пряжи), строения и отделки. При прочих равных условиях наибольшую прочность имеют ткани из синтетических нитей.

Разрывное удлинение или растяжимость - способность ткани удлиняться под действием растягивающих нагрузок.

Относительное разрывное удлинение - это отношение абсолютного разрывного удлинения образца к его начальной зажимной длине, выраженное в%.

Разрывное удлинение (абсолютное и относительное), так же как и разрывная нагрузка, является стандартным показателем качества.

Выносливость - способность ткани выдерживать, не разрушаясь, действие многократных деформаций растяжения или число циклов многократных деформаций, которое выдерживает образец ткани до разрушения. По выносливости можно судить о том, как поведет себя ткань в процессе производства и во время эксплуатации одежды.

Характерной особенностью тканей является их легкая изгибаемость . Ткани изгибаются, образуя морщины и складки, под действием небольшой нагрузки или даже собственного веса.

Основными характеристиками изгиба являются жесткость, драпируемость и сминаемость.

Жесткость - способность ткани сопротивляться изменению формы. Ткани, легко меняющие форму, считаются гибкими.

Гибкость - противоположная характеристика жесткости.

Жесткость и гибкость ткани зависят от волокнистого состава, структуры волокон, структуры и степени крутки пряжи (нитей), вида переплетения, плотности и отделки ткани.

Драп ируемость -способность ткани образовывать мягкие округлые складки. Зависит во многом от гибкости ткани.

Драпируемость связана с массой и жесткостью ткани. Применение мононитей, металлических нитей, сильно крученых пряжи и нитей, увеличение плотности ткани, аппретирование, отделка лаке, нанесение пленочных покрытий увеличивают жесткость ткани и, следовательно, снижают ее драпируемость.

Плохо драпируются парча, тафта, плотные ткани из крученой пряжи, жесткие ткани из шерсти с лавсаном, плащевые и курточные ткани с водоотталкивающими пропитками, ткани из комплексных капроновых нитей, искусственная кожа и замша. Хорошо драпируются массивные ткани ворсовых переплетений, мягкие гибкие массивные портьерные ткани, малоплотные ткани из гибких тонких нитей и слабо крученой пряжи, гибкие ткани с начесом, шерстяные ткани креповых переплетений и мягкие пальтовые шерстяные ткани.

Сминаемость - способность тканей сохранять складки в местах изгиба. Образующиеся на ткани при смятии складки и морщины не только портят внешний вид ткани, но и ускоряют ее износ. Сминаемость портит внешний вид изделий и уменьшает их прочность из-за частых влажно-тепловых обработок.

Наибольшей сминаемостью обладают ткани из растительных волокон с большой долей пластической деформации: хлопчатобумажные, вискозные, полинозные и особенно чистольняные.

Ткани из волокон животного происхождения и некоторых синтетических волокон (полиамидные, полиэфирные, полиуретановые) сминаются слабо и восстанавливают первоначальную форму без влажно-тепловой обработки.

Сминаемость определяют ручной пробой на смятие или с помощью специальных приборов. Существуют приборы для определения ориентированного и неориентированного смятия.

Осыпаемость - явление смещения и выпадения нитей из открытых срезов ткани. Осыпаемость выше в тканях с длинными перекрытиями в переплетении. Крутка нитей оказывает влияние на осыпаемость, хотя не влияет на раздвижку. Нити с большей круткой осыпаются легче.

Большие раздвижка и осыпаемость тканей ухудшает процессы швейного производства, затрудняют переработку материала, увеличивают расход ткани на изделие.

Носкость - т.е. стойкость ткани к разрушающим воздействиям, возникающим при использовании одежды. Для оценки носкости учитывают влияние, светопогоды, чистки, стирки, глажения и других факторов.

Сопротивление истиранию или выносливость к истиранию - способность ткани противостоять истирающим воздействиям (образование дыр). Образец ткани подвергают трению о шероховатую поверхность.

Физические свойства

Гигиеническими принято считать свойства тканей, существенно влияющие на комфортность изготовленной из них одежды и ее теплозащитные свойства. Гигиенические свойства должны учитываться при изготовлении одежды определенного назначения. К этим свойствам относятся гигроскопичность, воздухопроницаемость, паропроницаемость, водоупорность, пылеемкость, электризуемость.

Они зависят от волокнистого состава, параметров строения и характера отделки тканей.

Гигроскопичность характеризует способность ткани впитывать влагу из окружающей среды (воздуха).

Гигроскопичность тканей зависит от способности составляющих их волокон и нитей смачиваться водой, от строения тканей и от их отделки.

Воздухопроницаемость - способность ткани пропускать через себя воздух.

Она зависит от волокнистого состава, плотности и вида отделки ткани и характеризуется коэффициентом воздухопроницаемости Вр. Воздухопроницаемость зависит от строения ткани, ее пористости, от вида отделки. При всех равных условиях наименьшую воздухопроницаемость имеют ткани полотняного переплетения.

Паропроницаемость - способность ткани пропускать водяные пары.

Паропроницаемость является важнейшим гигиеническим свойством материала, так как она обеспечивает выход излишней парообразной и капельножидкой влаги (пота) из под одежного слоя.

Паропроницаемость особенно важна для тканей с низкой воздухопроницаемостью. Паропроницаемость зависит от гигроскопических свойств волокон и нитей, составляющих ткань, и от пористости ткани, т.е. от ее плотности, вида переплетения и характера отделки.

Водоупорность - способность ткани сопротивляться прониканию воды. Водоупорность особенно важна для тканей специального назначения (брезентов, палаточных, парусины), а также для шинельных, шерстяных пальтовых, плащевых и курточных тканей. Водоупорность тканей определяется их волокнистым составом, строением и характером отделки. Для увеличения водоупорности и придания водонепроницаемости ткани обрабатывают различными пропитками, на их поверхность наносят разнообразные пленочные покрытия.

Пылеемкость - способность материалов удерживать пыль.

Пылеемкость портит внешний вид ткани и загрязняет одежду. Наибольшей пылеемкостью обладают ткани из рыхлых пушистых текстурированных нитей, рыхлые шерстяные ткани с начесом, материалы с вертикально стоящим ворсом - бархат, велюр, плюш, искусственная замша, вельветоподобные трикотажные полотна и др.

Теплозащитные свойства являются важнейшими гигиеническими свойствами изделий зимнего ассортимента. Эти свойства зависят от теплопроводности образующих ткань волокон, от плотности, толщины и вида отделки ткани. Самым «холодным» волокном считается лен, так как он имеет высокие показатели теплопроводности, самым «теплым» - шерсть. Использование толстой пряжи, увеличение линейного заполнения ткани, применение многослойных переплетений, валка, ворсование увеличивают теплозащитные свойства ткани. Наиболее высокие показатели теплозащитных свойств имеют толстые плотные шерстяные ткани с начесом.

Оптическими свойствами тканей называется их способность вызывать у человека зрительные ощущения цвета, блеска, белизны и прозрачности. Цвет (колорит, окраска) ткани зависит от того, какую часть спектра отражает поверхность ткани.

Цветовой тон - основная качественная характеристика ощущения цвета, которая дает возможность сопоставлять цветовые ощущения образца материала с цветами солнечного спектра.

Насыщенность - качественная характеристика ощущения цвета, позволяющая в пределах одного цветового тона различать разную степень хроматичности. Наибольшую насыщенность имеют спектральные цвета. К малонасыщенным цветам относятся розовый, салатовый, голубой и др.

Светлота - количественная характеристика ощущения цвета при его сравнении с белым. Оранжевый цвет светлее красного, желтый светлее синего. Светлота прямо пропорциональна насыщенности. Например, сиреневый цвет светлее фиолетового.

Блеск ткани зависит от степени зеркального отражения ею светового потока. Блеск непосредственно связан с характером поверхности ткани, которая определяется строением нитей, их круткой, видом переплетения, характером отделки лицевой стороны.

Прозрачность характеризует способность ткани пропускать лучи света, вызывая ощущение прохождения через ткань светового потока, и дает представление о толщине материала. Прозрачность ткани зависит от прозрачности волокон и нитей, плотности ткани, наличия в ней сквозных пор, через которые проходит световой поток, не меняя своего направления. Наибольшей прозрачностью обладают малоплотные и ажурные ткани из прозрачных полиамидных мононитей, малоплотные ткани из натурального шелка (шифон, креп-жоржет), малоплотные ткани из тонкой крученой хлопчатобумажной пряжи (маркизет, вуаль), синтетические креповые ткани с низким линейным заполнением.

Колорит - соотношение всех цветов, участвующих в расцветке ткани. Колорит тканей может быть солнечным, жизнерадостным, весенним, теплым, холодным, мрачным и т.д. Колорит ткани зависит от тональности, насыщенности, светлоты рисунка и вызывает разнообразные ассоциации. Одни и те же рисунки ткани могут иметь различное колористическое решение. Рисунки на тканях разделяют по их содержанию, размерам, форме. По содержанию рисунки на тканях делятся на сюжетные, о которых можно рассказать; тематические, которые можно охарактеризовать простейшим понятием (горох, цветы, полоска, клетка, бусы и пр.), и беспредметные, т.е. абстрактные (пятна, неопределенные контуры и др.).

Электрические свойства

Электризуемость - способность тканей накапливать на своей поверхности статическое электричество.

Электризуемость непосредственно связана с природой образующих материал волокон, их строением, влажностью. С повышением влажности электризуемость снижается, так как повышается электропроводность. Синтетические волокна обладают способностью сильно электризоваться. Одежда из синтетических волокон оказывает отрицательное воздействие на здоровье.

Износостойкость тканей характеризуется их способностью противостоять разрушающим факторам.

В процессе использования швейных изделий на них действуют свет, солнце, влага, растяжение, сжатие, кручение, изгиб, трение, пот, стирка, химчистка, пониженные и повышенные температуры и пр. В результате воздействия всех этих факторов происходит изменение структуры материалов с постепенной потерей прочности вплоть до их разрушения.

Поэтому стойкость ткани к истиранию существенно зависит от структуры поверхности ткани, строения волокон и нитей, отделки ткани.

Выносливость к истиранию характеризуется чаще всего числом циклов истирания до разрушения - образования дыр. Выносливость к истиранию зависит от волокнистого состава ткани, ее поверхностной плотности, переплетения, вида отделки.

Наибольшую стойкость к истиранию имеют ткани, ленты, тесьмы, шнуры из полиамидных нитей и ткани с полиамидными волокнами. Более тяжелые ткани изнашиваются медленнее более легких.

Под действием трения происходит расшатывание структуры материалов, в рыхлых материалах на поверхности выскальзывают кончики коротких волокон (особенно синтетических), появляется своеобразная пушистость из-за того, что волокна скатываются, т.е. возникает явление, называемое пеллингуемостью.

Пиллингуемость - свойство материала образовывать на своей поверхности закатанные в комочки или косички концы волокон, называемые пиллями. Пиллингуемость портит внешний вид изделия и снижает его прочность, так как сформировавшиеся пилли отрываются от поверхности материала. Затем образуются новые пилли, т.е. происходит выпадение волокон из материала, его утонение.

Наибольшей пиллингуемостью обладают малоплотные ткани из рыхлой слабо крученой пряжи и из объемных текстурированных нитей, холстопрошивные нетканые полотна, драпы и пальтовые суконные ткани с большим содержанием в составе пряжи обратов производства, ткани из смеси волокон, содержащие короткие полиэфирные волокна.

Практическая часть

Образец №1: имеет хорошие физические свойства, плохую электризуемость, плохую пиллингуемость, хорошо сминается, легко драпируется, плохо осыпается.

Образец №2: имеет плохие гигиенические свойства, не гигроскопичен, прочный, не сминается, сохраняет формы после растяжения, мягкий.

8. Техника безопасности при выполнении работы

Требования безопасности перед началом работы:

1. надеть полагающуюся по нормам спецодежду, привести ее в порядок;

3. не надевать развевающиеся части одежды;

4. не надевать массивные кольца и браслеты, которые могут зацепиться и привести к повреждению ткани;

5. осмотреть свое рабочее место, проверить наличие и исправность инструментов;

6. убедиться в надежности освещенности рабочего места;

Требования безопасности во время работы:

1. рабочее место и проходы к нему следует содержать в чистоте, не допуская загромождения их запасными частями.

2. материалы необходимо складывать в металлические ящики, с плотно закрывающимися крышками.

Требования безопасности в аварийных ситуациях:

1. при возникновении аварийной ситуации прекратить работу, немедленно сообщить мастеру и далее выполнять его команды.

2. при ликвидации аварийной ситуации необходимо действовать в соответствии с утвержденным планом ликвидации аварий.

3. при загорании электрооборудования применять только углекислотные огнетушители, или порошковые.

4. при повреждении изоляции электрооборудования прекратить работу, поставить в известность мастера и возобновлять работу только после устранения повреждений.

5. в случае получения травмы прекратить работу, передать обязанности другому лицу, поставить в известность мастера и обратиться в медпункт.

Требования безопасности по окончании работы:

1. сложить инструмент, инвентарь в специально отведенное место;

2. снять спецодежду и убрать ее в шкаф гардеробной.

Заключение

В представленной экзаменационной работе была рассмотрена тема «Анализ образца ткани», в процессе которой были рассмотрены особенности двух образцов ткани.

По итогам исследований и изучений можно сделать следующие выводы: льняные ткани характеризуются высокой прочностью, устойчивостью к истиранию, сорбционной и влаговпитывающей способностью, стабильной паро- и воздухопроницаемостью, поэтому из них издавна изготовляют столовое, постельное и нательное белье, полотенечные ткани и полотенца. Благодаря хорошей теплопроводности они незаменимы для пошива летней одежды, платьев, сорочек, блузок и других изделий.

По объему производства льняные ткани значительно уступают хлопчатобумажным (на долю льняных тканей приходится всего около 6% общего объема производства тканей). Однако эти ткани имеют большое народнохозяйственное значение благодаря ценным потребительским свойствам. Так, уникальны их гигиенические свойства, обеспечивающие комфорт и сохранение здоровья человека. Благодаря высоким эстетическим свойствам и износостойкости они незаменимы для многих видов изделий бытового и технического назначения.

Список используемых источников

1. Бусова Н.А., Миненко Н.Г. Ткачество льняных тканей. Изд. 2 - е, испр. И доп. Учебник. [Текст] - М.,

2. Гердеев Василий Александрович. Ткацкие переплетения и анализ тканей, [Текст] - М: изд - во «Легкая индустрия», 1969, стр. 120, т. 18000 экз.;

3. Гордеев В.А. «Ткацкие переплетения и анализ тканей», [Текст] - М: изд - во «Легкая индустрия», 1969, стр. 120, т. 18000;

4. Грановский Т.С., Мшвениерадзе А.С. Строение и анализ тканей. Учебник для средних проф. - техн. училищ. - 2 - е изд., перераб. и доп. - М.: [Текст] - М: Легпромбытиздат, 1978. - 96 стр.;

5. Юденич Г.В. Переплетение и анализ тканей, изд - во «Легкая индустрия», 1968 г., стр. 164.

6. Анализ образца ткани [Электронный ресурс] - Режим доступа: http://academy.crosskpk.ru/bank/6/005/%D0% A1% D1% 82% D1% 80% D0% B0% D0% BD % D0% B8% D1% 86% D1% 8B/%D0% A2% D0% B5% D0% BE % D1% 80% D0% B5% D1% 82% D0% B8% D1% 87% D0% B5% D1% 81% D0% BA % D0% B8% D0% B9% 20% D0% BC % D0% B0% D1% 82% D0% B5% D1% 80% D0% B8% D0% B0% D0% BB2_2.html -

7. Анализ образца ткани [Электронный ресурс] - Режим доступа http://russian_french.fracademic.com/26675/анализ_образца_ткани

8. анализ строения ткани [Электронный ресурс] - Режим доступа http://belspin.vstu.by/files/9913/7154/2771/37.pdf

Размещено на Allbest.ru

Подобные документы

    Прокладывание уточной нити на ткацких станках с малогабаритными прокладчиками утка. Технологические операции формирования ткани. Основные механизмы ткацкого станка. Отвод ткани и подача нитей основы. Механизм для питания станка утком различных видов.

    реферат , добавлен 20.08.2014

    Анализ подбора основного, подкладочного, прокладочного, прикладного материалов, фурнитуры и отделки для конкретной выбранной модели женского полупальто. Определение волокнистого состава, структуры нитей материалов верха и подкладки, сочетания тканей.

    курсовая работа , добавлен 03.04.2012

    Оценка качества хлопчатобумажных, льняных, шерстяных и шелковых тканей. Пороки внешнего вида. Стандарты по оценке качества нитей и пряжи. Отклонения от норм прочности крашения ткани. Пороки отделки тканей. Номенклатура показателей качества товара.

    реферат , добавлен 25.07.2009

    Оценка полиграфии исполнения издания по группе формных процессов. Схема допечатных процессов технологии воспроизведения издания-образца. Сравнительный анализ формных материалов и технологий изготовления печатных форм для запечатывания издания-образца.

    курсовая работа , добавлен 26.02.2012

    Химический состав, свойства и применение латуней в автомобилестроении. Испытание на маятниковом копре стандартного стального образца. Определение работы удара, затраченную на излом образца, запас работы маятникового копра до удара и эскиз детали.

    контрольная работа , добавлен 04.02.2014

    Производство полипропиленовых волокон и перспектива использования для текстильной промышленности полиэфирных нитей малой линейной плотности. Использование текстурированных нитей разной степени растяжимости для шелкоподобных тканей с креподобным эффектом.

    реферат , добавлен 16.11.2010

    Классификация и ассортимент тканей. Строение ткани - характер взаимного расположения волокон и нитей. Четыре класса переплетений. Оценка уровня качества тканей. Отклонения физико-механических показателей продукции от минимальных или максимальных норм.

    дипломная работа , добавлен 01.08.2013

    Обоснование выбора переплетения. Структура пряжи и нитей хлопчатобумажных тканей. Свойства, влияющие на срок службы ткани. Разработка трикотажного полотна ажурных переплетений для изготовления блузона на котонной машине. Технологический расчет рисунка.

    курсовая работа , добавлен 14.04.2015

    Выбор экономически целесообразного размера и региона размещения предприятия. Выбор плана ткачества. Определение норм расхода пряжи (нитей). Расчёт сопряжённости оборудования. Размещение и планировка оборудования, технико-экономические показатели.

    курсовая работа , добавлен 15.05.2012

    Процесс образования ткани на ткацком станке. Назначение, виды и технологическая схема ткацкого станка. Описание работы станка по кинематической схеме. Расчёт частот и скоростей вращения рабочих органов станка, плотности по утку, заправочного натяжения.

Статьи по теме: