Энергетические уровни атомов.

При изучении мы узнали, чему равно максимальное число электронов на каждой орбитали, на различных энергетических уровнях и подуровнях.

Что еще нужно знать для установления строения электронной оболочки атома любого элемента? Для этого нужно знать порядок заполнения орбиталей электронами.

Порядок заполнения электронами атомных орбиталей определяет принцип наименьшей энергии (принцип минимума энергии):

Основное (устойчивое) состояние атома - это такое состояние, которое характеризуется минимальной энергией. Поэтому электроны заполняют орбитали в порядке увеличения их энергии.

Орбитали одного подуровня имеют одинаковую энергию.

Например, три орбитали данного р-подуровня имеют одинаковую энергию.

Поэтому принцип наименьшей энергии определяет порядок заполнения энергетических подуровней: электроны заполняют энергетические подуровни в порядке увеличения их энергии.

Как показывает рисунок ниже, наименьшую энергию имеет 15-подуровень, который первым заполняется электронами.

Затем последовательно заполняется электронами следующие подуровни: 2s, 2р, 3s, 3р. После 3р-подуровня электроны заполняют 4, подуровень, так как он имеет меньшую энергию, чем 3d-подуровень.

Это объясняется тем, что энергия подуровня определяется суммой главного и побочного квантовых чисел, т. е. суммой (n + l ). Чем меньше эта сумма, тем меньше энергия подуровня. Если суммы n + l одинаковы для разных подуровней, то их энергия тем меньше, чем меньше главное квантовое число n. Изложенные правила были сформулированы в 1951 г. советским ученым В. М. Клечковским (правила Клечковского ).

На подуровнях, которые показаны на рисунке, может разместиться 112 электронов. В атомах известных элементов находится от 1 до 110 электронов. Поэтому другие подуровни в основных состояниях атомов не заполняются электронами.

Наконец, осталось выяснить вопрос, в каком порядке электроны заполняют орбитам одного подуровня. Для этого нужно познакомиться с правилом Гунда :

На одном подуровне электроны располагаются так, чтобы абсолютное значение суммы спиновых квантовых чисел (суммарного спина) было максимальным. Это соответствует устойчивому состоянию атома.

Рассмотрим, например, какое расположение трех электронов на р-подуровне соответствует устойчивому состоянию атома:

Рассчитаем абсолютное значение суммарного спина для каждого состояния:

Строение электронных оболочек (электронные конфигурации) атомов элементов I IV периодов

Чтобы правильно изобразить электронные конфигурации различных атомов, нужно знать:

1) число электронов в атоме (равно порядковому номеру элемента);

2) максимальное число электронов на уровнях, подуровнях;

3) порядок заполнения подуровней и орбиталей.

Элементы I периода:

В таблицах представлены схемы электронного строения, электронные и электронно-графические формулы атомов элементов II, III и IV периодов.

Элементы II периода:

Элементы III периода:

Элементы IV периода:

Данная статья рассказывает, когда были обнаружены энергетические уровни. А также, каким образом их объяснили и как применяется такое свойство вещества, как квантование энергии электрона в атоме.

Молния и мрамор

Строение веществ интересовало человечество с тех пор, как появилась возможность задавать абстрактные вопросы, не беспокоясь о пропитании. Такие грозные явления, как молнии, наводнения, засухи, вызывали ужас. Неспособность объяснить происходящее вокруг порождала представление о гневных богах, которые требовали жертв. И каждый день люди стремились каким-то образом научиться предсказывать погоду, чтобы быть готовыми к очередному катаклизму. О том, что вещества состоят из очень маленьких частиц, догадались еще древние греки. Они заметили, что мраморные ступени, по которым за десятилетия прошло много людей, меняют форму, а значит, каждая ступня забирает с собой какую-то часть камня. От этого открытия до понятия о том, что такое энергетические уровни, очень далеко как по времени, так и по объему знаний. Однако именно то замечание, сделанное более трех тысяч лет назад, привело нашу науку к современному виду.

Резерфорд и Бор

В начале двадцатого века благодаря опытам с электричеством уже было известно, что минимальной частицей, которая несет все химические свойства вещества, является атом. В целом он был электронейтрален, однако в нем находились положительные и отрицательные элементы. Ученым необходимо было выяснить, как они распределяются. Были предложены несколько моделей, одна из которых называлась даже «булочка с изюмом». Знаменитый опыт Резерфорда показал, что в центре атома находится тяжелое положительное ядро, тогда как отрицательный заряд сосредоточен в маленьких легких электронах, которые вращаются на периферии. Энергетические уровни электронов в атоме и процесс их открытия привели физику к прорыву. Согласно уравнениям Максвелла, любой движущийся заряженный объект порождает поле, непрерывно излучая в пространство энергию. Таким образом, возник вопрос: почему в атомах электроны вращаются, но не излучаются и не падают на ядро, теряя энергию? Благодаря постулатам Бора стало ясно, что электроны занимают в атоме определенные энергетические уровни, и, находясь на этих стабильных орбитах, они не теряют энергию. Этот теоретический тезис нуждался в физическом обосновании.

Планк и лазеры

Когда Макс Планк, пытаясь упростить решение некоторых уравнений, ввел понятие кванта, в физике наступила новая эра. Она называется неклассическим периодом и связана с целым рядом существенных открытий, которые кардинально изменили жизнь человечества. Как пенициллин в медицине, квант в физике перевернул весь строй знаний. Примечательно, что новые формулы не отрицали, а, наоборот, подтверждали прежние выводы. При условиях объемных тел, макрорасстояний, обычных скоростей они превращались в привычные и понятные законы. Квантовая физика помогла ответить на многие вопросы, в том числе почему в атоме существуют энергетические уровни электронов. Стало ясно, что переходить с одной орбиты на другую электроны могут рывком. При этом, в зависимости от направления скачка, происходило либо поглощение, либо излучение энергии. Многие свойства веществ строятся именно на этих скачкообразных переходах. Благодаря тому, что в атомах существуют энергетические уровни, работают лазеры, существует спектроскопия, возможно создание новых материалов.

Волна и фотон

Однако само явление квантования энергии не дает четкого объяснения того, почему какие-то уровни стабильны и отчего зависит расстояние от орбиты до ядра в атоме. На помощь пришла нестандартная идея. Началось все с несоответствия результатов разных экспериментов над одними и теми же объектами. В одних случаях они вели себя как частицы, которые обладают массой и, следовательно, инерцией: двигали пластины, вращали лопасти. В других - как набор волн, которые способны пересекаться, гасить или усиливать друг друга (например, фотоны, носители света). В итоге ученым пришлось признать: электроны - это и частицы, и волны. Так называемый корпускулярно-волновой дуализм объяснил энергетические уровни атома. Как волна, электрон, который движется по кругу, накладывается сам на себя. Таким образом, если максимум «головы» совпадает с минимумом «хвоста», волна затухает. На определенных расстояниях до центра максимумы совпадают, и электрон может существовать, как бы непрерывно поддерживая себя, создавая энергетические уровни атома.

Химия и электрон

В процессе изучения химических свойств веществ выяснилось, что уровни у каждого из них - свои. То есть у гелия картина иная, чем у водорода, хотя их атомные номера отличаются всего лишь на единицу. Энергетические уровни атомов химических элементов зависят от их общего количества. То есть выходит, что верхние электроны как бы «давят» на нижние уровни, вынуждая их сдвигаться. У строения энергетической оболочки атома есть свои закономерности, которые определяются четырьмя главными квантовыми числами. Зная их, несложно для каждого вида химического элемента рассчитать энергетические уровни электронов.

Сегодня поведаем о том, что такое энергетический уровень атома, когда человек сталкивается с этим понятием, и где оно применяется.

Школьная физика

Люди впервые встречаются с естественными науками в школе. И если на седьмом году обучения дети еще находят новые знания по биологии и химии интересными, то в старших классах их начинают бояться. Когда приходит черед атомной физики, уроки по этой дисциплине уже внушают только отвращение к непонятным задачам. Однако стоит помнить, что у всех открытий, которые сейчас превратились в скучные школьные предметы, нетривиальная история и целый арсенал полезных применений. Узнавать, как устроен мир - это как открывать шкатулку с чем-то интересным внутри: всегда хочется найти потайное отделение и обнаружить там еще одно сокровище. Сегодня мы расскажем об одном из базовых физики, строении вещества.

Неделимый, составной, квантовый

С древнегреческого языка слово «атом» переводится как «неделимый, наименьший». Такое представление - следствие истории науки. Некоторые древние греки и индийцы верили, что все на свете состоит из мельчайших частиц.

В современной истории были произведены намного раньше физических исследований. Ученые семнадцатого и восемнадцатого веков работали в первую очередь для увеличения военной мощи страны, короля или герцога. А чтобы создать взрывчатку и порох, надо было понять, из чего они состоят. В итоге исследователи выяснили: некоторые элементы нельзя разделить дальше определенного уровня. Значит, существуют наименьшие носители химических свойств.

Но они ошибались. Атом оказался составной частицей, а его способность изменяться носит квантовый характер. Об этом говорят и переходы энергетических уровней атома.

Положительное и отрицательное

В конце девятнадцатого века ученые вплотную подошли к изучению мельчайших частиц вещества. Например, было понятно: атом содержит как положительно, так и отрицательно заряженные составляющие. Но была неизвестна: расположение, взаимодействие, соотношение веса его элементов оставались загадкой.

Резерфорд поставил опыт по рассеянию альфа-частиц тонкой Он выяснил, что в центре атомов находятся тяжелые положительные элементы, а по краям расположены очень легкие отрицательные. Значит, носителями разных зарядов являются не похожие друг на друга частицы. Это объясняло заряд атомов: к ним можно было добавить элемент или удалить его. Равновесие, которое поддерживало нейтральность всей системы, нарушалось, и атом приобретал заряд.

Электроны, протоны, нейтроны

Позже выяснилось: легкие отрицательные частицы - это электроны, а тяжелое положительное ядро состоит из двух видов нуклонов (протонов и нейтронов). Протоны отличались от нейтронов только тем, что первые были положительно заряженными и тяжелыми, а вторые имели только массу. Изменить состав и заряд ядра сложно: для этого требуются неимоверные энергии. А вот электроном атом делится гораздо легче. Есть более электроотрицательные атомы, которые охотнее «отбирают» электрон, и менее электроотрицательные, которые скорее «отдадут» его. Так формируется заряд атома: если электронов избыток, то он отрицательный, а если недостаток - то положительный.

Длинная жизнь вселенной

Но такое строение атома озадачивало ученых. Согласно господствовавшей в те времена классической физике, электрон, который все время двигался вокруг ядра, должен был непрерывно излучать электромагнитные волны. Так как этот процесс означает потерю энергии, то все отрицательные частицы вскоре потеряли бы свою скорость и упали на ядро. Однако вселенная существует уже очень долго, а всемирной катастрофы еще не произошло. Назревал парадокс слишком старой материи.

Постулаты Бора

Объяснить несоответствие смогли постулаты Бора. Тогда это были просто утверждения, скачки в неизвестное, которые не подтверждались расчетами или теорией. Согласно постулатам, существовали в атоме энергетические уровни электронов. Каждая отрицательно заряженная частица могла находиться только на этих уровнях. Переход между орбиталями (так назвали уровни) осуществляется прыжком, при этом выделяется или поглощается квант электромагнитной энергии.

Позже открытие Планком кванта объяснило такое поведение электронов.

Свет и атом

Количество энергии, необходимой для перехода, зависит от расстояния между энергетическими уровнями атома. Чем они дальше друг от друга, тем больше выделяемый или поглощаемый квант.

Как известно, свет - это и есть квант электромагнитного поля. Таким образом, когда электрон в атоме переходит с более высокого на более низкий уровень, он творит свет. При этом действует и обратный закон: когда электромагнитная волна падает на предмет, она возбуждает его электроны, и они переходят на более высокую орбиталь.

Кроме того, энергетические уровни атома индивидуальны для каждого вида химического элемента. Узор расстояний между орбиталями различается для водорода и золота, вольфрама и меди, брома и серы. Поэтому анализ спектров испускания любого объекта (в том числе и звезды) однозначно определяет, какие вещества и в каком количестве в нем присутствуют.

Применяется этот метод невероятно широко. Спектральный анализ используется:

  • в криминалистике;
  • в контроле качества еды и воды;
  • в производстве товаров;
  • в создании новых материалов;
  • в усовершенствовании технологий;
  • в научных экспериментах;
  • в исследовании звезд.

Этот перечень лишь примерно показывает, насколько полезным оказалось открытие электронных уровней в атоме. Электронные уровни - самые грубые, самые большие. Существуют более мелкие колебательные, и еще более тонкие вращательные уровни. Но они актуальны только для сложных соединений - молекул и твердых тел.

Надо сказать, что структура ядра до сих пор не исследована до конца. Например, нет ответа на вопрос о том, почему определенному количеству протонов соответствует именно такое число нейтронов. Ученые предполагают, что атомное ядро тоже содержит некий аналог электронных уровней. Однако до сих пор это не доказано.

Всех людей, существующих в мире, можно разделить на несколько групп по уровню энергетического развития.

  • Уровень 1 . Низшая ступень. Сюда относятся люди с нарушенным и ослабленным энергетическим полем. Часто это представители человечества, имеющие хронические или временные заболевания.
  • Уровень 2 . Часть населения, принадлежащая к европеоидной расе и сознательно не отражающая свое биополе.
  • Уровень 3 . Дает возможность почувствовать не только свое биополе, но и энергетику другого человека. Часто людей, умеющих это делать, именуют экстрасенсами.
  • Уровень 4 . Часть жителей планеты, способных концентрировать энергию и затем направлять ее на живых существ (людей и животных), события, окружающие предметы и на все, что поддается воздействию. К этой группе относят колдунов, владеющих темной и светлой магией (знахари, целители, ведьмы, шаманы, ведуны). В индийских странах подобных людей называют асмерами и хилерами. Также к четвертому уровню причисляют начинающих йогов.
  • Уровень 5 . Пятую группу составляют люди, способные регенерировать и восстанавливать свой организм на клеточном уровне (кроме половых клеток). В природе не существуют людей, одаренных от рождения такой силой. Все, кто обладает энергетикой пятого и шестого уровней проделали колоссальную работу по самосовершенствованию и развитию своего биополя.
  • Уровень 6-8 . Предел осознания своего энергетического поля, которым обладают йоги, индийские волшебники высших ступеней. Такие люди способны воздействовать на судьбу человека и последующих поколений, управлять психикой и сознательно производить прочие серьезные изменения.

Специалист по эзотерике Г. Лэндис выделил более десятка факторов, которые помогают человеку развить свой энергетический уровень.

  1. Выполнение упражнений, способствующих повышению силы биополя.
  2. Ориентация на положительные эмоции вместо отрицательных. Накопление первых и устранение вторых.
  3. Самосозерцание и медитация.
  4. Постоянное общение и контактирование с людьми, относящимися к более высокому энергетическому уровню.
  5. Стремление вобрать в себя как можно больше энергии Вселенной - праны.
  6. Исполнение всех своих обязанностей.
  7. Развитие способности организма получать только полезную энергию из пищи.
  8. Научиться правильно дышать, чтобы газообмен при дыхании происходил интенсивнее.
  9. Развитие физической выносливости.
  10. Выполнение упражнений, направленных на улучшение гибкости позвоночника и суставов.
  11. Получение и сохранение биологической энергии во время сна.
  12. Избегание пустых разговоров и действий, не несущих пользу.
  13. Постоянный контакт с живыми существами (животные и птицы).
  14. Выращивание растений и овощей (разведение цветов, плодовых культур в саду и огороде)
  15. Посвящение себя сфере искусства как хобби.
  16. Вегетарианство или сведение до минимума поедания мяса и блюд из него.

Чтобы развить свое биополе, нет необходимости беспрекословно исполнять каждый пункт, названный в списке. Можно взять несколько приведенных советов, и стараться выполнять их постоянно и в полной мере. Этот вариант будет лучше, чем пытаться следовать всем рекомендациям, но в итоге относится недобросовестно к указанным предписаниям. Было бы хорошо придерживаться пунктов, обозначенных в первой половине списка, так как они наиболее плодотворно влияют на развитие энергетического уровня.

Что происходит с атомами элементов во время химических реакций? От чего зависят свойства элементов? На оба эти вопроса можно дать один ответ: причина лежит в строении внешнего В нашей статье мы рассмотрим электронное металлов и неметаллов и выясним зависимость между структурой внешнего уровня и свойствами элементов.

Особые свойства электронов

При прохождении химической реакции между молекулами двух или более реагентов происходят изменения в строении электронных оболочек атомов, тогда как их ядра остаются неизменными. Сначала ознакомимся с характеристиками электронов, находящихся на наиболее удаленных от ядра уровнях атома. Отрицательно заряженные частицы располагаются слоями на определенном расстоянии от ядра и друг от друга. Пространство вокруг ядра, где нахождение электронов наиболее возможно, называется электронной орбиталью. В ней сконденсировано около 90 % отрицательно заряженного электронного облака. Сам электрон в атоме проявляет свойство дуальности, он одновременно может вести себя и как частица, и как волна.

Правила заполнения электронной оболочки атома

Количество энергетических уровней, на которых находятся частицы, равно номеру периода, где располагается элемент. На что же указывает электронный состав? Оказалось, что количество электронов на внешнем энергетическом уровне для s- и p-элементов главных подгрупп малых и больших периодов соответствует номеру группы. Например, у атомов лития первой группы, имеющих два слоя, на внешней оболочке находится один электрон. Атомы серы содержат на последнем энергетическом уровне шесть электронов, так как элемент расположен в главной подгруппе шестой группы и т. д. Если же речь идет о d-элементах, то для них существует следующее правило: количество внешних отрицательных частиц равно 1 (у хрома и меди) или 2. Объясняется это тем, что по мере увеличения заряда ядра атомов вначале происходит заполнение внутреннего d- подуровня и внешние энергетические уровни остаются без изменений.

Почему изменяются свойства элементов малых периодов?

В малыми считаются 1, 2, 3 и 7 периоды. Плавное изменение свойств элементов по мере возрастания ядерных зарядов, начиная от активных металлов и заканчивая инертными газами, объясняется постепенным увеличением количества электронов на внешнем уровне. Первыми элементами в таких периодах являются те, чьи атомы имеют всего один или два электрона, способные легко отрываться от ядра. В этом случае образуется положительно заряженный ион металла.

Амфотерные элементы, например, алюминий или цинк, свои внешние энергетические уровни заполняют небольшим количеством электронов (1- у цинка, 3 - у алюминия). В зависимости от условий протекания химической реакции они могут проявлять как свойства металлов, так и неметаллов. Неметаллические элементы малых периодов содержат от 4 до 7 отрицательных частиц на внешних оболочках своих атомов и завершают ее до октета, притягивая электроны других атомов. Например, неметалл с наибольшим показателем электроотрицательности - фтор, имеет на последнем слое 7 электронов и всегда забирает один электрон не только у металлов, но и у активных неметаллических элементов: кислорода, хлора, азота. Заканчиваются малые периоды, как и большие, инертными газами, чьи одноатомные молекулы имеют полностью завершенные до 8 электронов внешние энергетические уровни.

Особенности строения атомов больших периодов

Четные ряды 4, 5, и 6 периодов состоят из элементов, внешние оболочки которых вмещают всего один или два электрона. Как мы говорили ранее, у них происходит заполнение электронами d- или f- подуровней предпоследнего слоя. Обычно это - типичные металлы. Физические и химические свойства у них изменяются очень медленно. Нечетные ряды вмещают такие элементы, у которых заполняются электронами внешние энергетические уровни по следующей схеме: металлы - амфотерный элемент - неметаллы - инертный газ. Мы уже наблюдали ее проявление во всех малых периодах. Например, в нечетном ряду 4 периода медь является металлом, цинк - амфотерен, затем от галлия и до брома происходит усиление неметаллических свойств. Заканчивается период криптоном, атомы которого имеют полностью завершенную электронную оболочку.

Как объяснить деление элементов на группы?

Каждая группа - а их в короткой форме таблицы восемь, делится еще и на подгруппы, называемые главными и побочными. Такая классификация отражает различное положение электронов на внешнем энергетическом уровне атомов элементов. Оказалось, что у элементов главных подгрупп, например, лития, натрия, калия, рубидия и цезия последний электрон расположен на s-подуровне. Элементы 7 группы главной подгруппы (галогены) заполняют отрицательными частицами свой p-подуровень.

Для представителей побочных подгрупп, таких, как хром, типичным будет наполнение электронами d-подуровня. А у элементов, входящих в семейства накопление отрицательных зарядов происходит на f-подуровне предпоследнего энергетического уровня. Более того, номер группы, как правило, совпадает с количеством электронов, способных к образованию химических связей.

В нашей статье мы выяснили, какое строение имеют внешние энергетические уровни атомов химических элементов, и определили их роль в межатомных взаимодействиях.

Статьи по теме: