Энергетические уровни атомов. Химия

(1887-1961) для описания состояния электрона в атоме водорода. Он объединил математические выражения для колебательных процессов и уравнение де Бройля и получил следующее линейное дифференциальное однородное уравнение:

где ψ - волновая функция (аналог амплитуды для волнового движения в классической механике), которая характеризует движение электрона в пространстве как волнообразное возмущение; x , y , z - координаты, m - масса покоя электрона, h - постоянная Планка, E - полная энергия электрона, E p - потенциальная энергия электрона.

Решениями уравнения Шрёдингера являются волновые функции. Для одноэлектронной системы (атома водорода) выражение для потенциальной энергии электрона имеет простой вид:

E p = −e 2 / r ,

где e - заряд электрона, r - расстояние от электрона до ядра. В этом случае уравнение Шрёдингера имеет точное решение.


Чтобы решить волновое уравнение, надо разделить его переменные. Для этого заменяют декартовы координаты x , y , z на сферические r , θ, φ. Тогда волновую функцию можно представить в виде произведения трех функций, каждая из которых содержит только одну переменную:

ψ(x ,y ,z ) = R (r ) Θ(θ) Φ(φ)

Функцию R (r ) называют радиальной составляющей волновой функции, а Θ(θ) Φ(φ) - ее угловыми составляющими.

В ходе решения волнового уравнения вводятся целые числа - так называемые квантовые числа (главное n , орбитальное l и магнитное m l ). Функция R (r ) зависит от n и l , функция Θ(θ) - от l и m l , функция Φ(φ) - от m l .

Геометрическим образом одноэлектронной волновой функции является атомная орбиталь . Она представляет собой область пространства вокруг ядра атома, в которой высока вероятность обнаружения электрона (обычно выбирают значение вероятности 90-95%). Это слово происходит от латинского "орбита " (путь, колея), но имеет другой смысл, не совпадающий с понятием траектории (пути) электрона вокруг атома, предложенным Н. Бором для планетарной модели атома. Контуры атомной орбитали - это графическое отображение волновой функции, полученной при решении волнового уравнения для одного электрона.

Квантовые числа

Квантовые числа, возникающие при решении волнового уравнения, служат для описания состояний квантово-химической системы. Каждая атомная орбиталь характеризуется набором из трех квантовых чисел: главного n , орбитального l и магнитного m l .

Главное квантовое число n характеризует энергию атомной орбитали. Оно может принимать любые положительные целочисленные значения. Чем больше значение n , тем выше энергия и больше размер орбитали. Решение уравнения Шрёдингера для атома водорода дает следующее выражение для энергии электрона:

E = −2π 2 me 4 / n 2 h 2 = −1312,1 / n 2 (кДж/моль)

Таким образом, каждому значению главного квантового числа отвечает определенное значение энергии электрона. Уровни энергии с определенными значениями n иногда обозначают буквами K , L , M , N ... (для n = 1, 2, 3, 4...).

Орбитальное квантовое число l характеризует энергетический подуровень. Атомные орбитали с разными орбитальными квантовыми числами различаются энергией и формой. Для каждого n разрешены целочисленные значения l от 0 до (n −1). Значения l = 0, 1, 2, 3... соответствуют энергетическим подуровням s , p , d , f .


Форма s -орбиталей сферическая, p -орбитали напоминают гантели, d - и f -орбитали имеют более сложную форму.

Магнитное квантовое число m l отвечает за ориентацию атомных орбиталей в пространстве. Для каждого значения l магнитное квантовое число m l может принимать целочисленные значения от −l до +l (всего 2l + 1 значений). Например, р -орбитали (l = 1) могут быть ориентированы тремя способами (m l = -1, 0, +1).

Электрон, занимающий определенную орбиталь, характеризуется тремя квантовыми числами, описывающими эту орбиталь и четвертым квантовым числом (спиновым ) m s , которое характеризует спин электрона - одно из свойств (наряду с массой и зарядом) этой элементарной частицы. Спин - собственный магнитный момент количества движения элементарной частицы. Хотя это слово по-английски означает "вращение ", спин не связан с каким-либо перемещением частицы, а имеет квантовую природу. Спин электрона характеризуется спиновым квантовым числом m s , которое может быть равно +1/2 и −1/2.

Квантовые числа для электрона в атоме:

Энергетические уровни и подуровн и

Совокупность состояний электрона в атоме с одним и тем же значением n называют энергетическим уровнем . Число уровней, на которых находятся электроны в основном состоянии атома, совпадает с номером периода, в котором располагается элемент. Номера этих уровней обозначают цифрами: 1, 2, 3,... (реже - буквами K , L , M , ...).

Энергетический подуровень - совокупность энергетических состояний электрона в атоме, характеризующихся одними и теми же значениями квантовых чисел n и l . Подуровни обозначают буквами: s , p , d , f ... Первый энергетический уровень имеет один подуровень, второй - два подуровня, третий - три подуровня и так далее.

Если на схеме орбитали обозначить в виде ячеек (квадратных рамок), а электроны - в виде стрелок ( или ↓), то можно увидеть, что главное квантовые число характеризуют энергетический уровень (ЭУ), совокупность главного и орбитального квантовых чисел - энергетический подуровень (ЭПУ), совокупность главного, орбитального и магнитного квантовых чисел - атомную орбиталь , а все четыре квантовые числа - электрон.


Каждой орбитали отвечает определенная энергия. Обозначение орбитали включает номер энергетического уровня и букву, отвечающую соответствующему подуровню: 1s , 3p , 4d и т.п. Для каждого энергетического уровня, начиная со второго, возможно существование трех равных по энергии p -орбиталей, расположенных в трех взаимно перпендикулярных направлениях. На каждом энергетическом уровне, начиная с третьего, имеется пять d -орбиталей, имеющих более сложную четырехлепестковую форму. Начиная с четвертого энергетического уровня, появляются еще более сложные по форме f -орбитали; на каждом уровне их семь. Атомную орбиталь с распределенным по ней зарядом электрона нередко называют электронным облаком.

Электронная плотность

Пространственное распределение заряда электрона называется электронной плотностью. Исходя из того, что вероятность нахождения электрона в элементарном объеме dV равна |ψ| 2 dV , можно рассчитать функцию радиального распределения электронной плотности.

Если за элементарный объем принять объем шарового слоя толщиной dr на расстоянии r от ядра атома, то

dV = 4πr 2 dr ,

а функция радиального распределения вероятности нахождения электрона в атоме (вероятности электронной плотности), равна

W r = 4πr 2 |ψ| 2 dr

Она представляет собой вероятность обнаружения электрона в сферическом слое толщиной dr на определенном расстоянии слоя от ядра атома.


Для 1s -орбитали вероятность обнаружения электрона максимальна в слое, находящемся на расстоянии 52,9 нм от ядра. По мере удаления от ядра атома вероятность обнаружения электрона приближается к нулю. В случае 2s -орбитали на кривой появляются два максимума и узловая точка, где вероятность обнаружения электрона равна нулю. В общем случае для орбитали, характеризующейся квантовыми числами n и l , число узлов на графике функции радиального распределения вероятности равно (n l − 1).

Чем ближе к атомному ядру находится электронная оболочка атома, тем сильнее притягиваются ядром электроны и тем больше их энергия связи с ядром. Поэтому расположение электронных оболочек удобно характеризовать энергетическими уровнями и подуровнями и распределением по ним электронов. Число электронных энергетических уровней равно номеру периода, в котором находится данный элемент. Сумма чисел электронов на энергетических уровнях равна порядковому номеру элемента.

Электронная структура атома представлена на рис. 1.9 в виде диаграммы распределения электронов по энергетическим уровням и подуровням. Диаграмма состоит из электронных ячеек, изображенных квадратами. Каждая ячейка символизирует одну электронную орбиталь, способную принять два электрона с противоположными спинами, обозначаемыми стрелками вверх и вниз.

Рис. 1.9.

Электронная диаграмма атома построена в последовательности повышения номера энергетического уровня. В том же направлении повышается энергия электрона и понижается энергия его связи с ядром. Для наглядности можно представить, что ядро атома находится «внизу» диаграммы. Число электронов в атоме элемента равно числу протонов в ядре, т.е. порядковому номеру элемента в периодической таблице.

Первый энергетический уровень состоит всего из одной орбитали, которую обозначают символом s. Эту орбиталь заполняют электроны водорода и гелия. У водорода один электрон, и водород одновалентен. У гелия два парных электрона с противоположными спинами, гелий имеет нулевую валентность и не образует соединений с другими элементами. Энергии химической реакции недостаточно для того, чтобы возбудить атом гелия и перевести электрон на второй уровень.

Второй энергетический уровень состоит из.«-подуровня и /.(-подуровня, имеющего три орбитали (ячейки). Литий третий электрон посылает на 2«-подуровень. Один непарный электрон обусловливает одновалентность лития. Бериллий вторым электроном заполняет тот же подуровень, поэтому в невозбужденном состоянии у бериллия два парных электрона. Однако незначительной энергии возбуждения оказывается достаточно для того, чтобы перевести один электрон на ^-подуровень, что делает бериллий двухвалентным.

Подобным образом происходит дальнейшее заполнение 2р-под- уровня. Кислород в соединениях двухвалентен. Более высокие валентности кислород не проявляет из-за невозможности распаривания электронов второго уровня и перевода их на третий энергетический уровень.

В отличие от кислорода сера, расположенная под кислородом в той же подгруппе, может проявлять в своих соединениях валентности 2, 4 и 6 благодаря возможности распаривания электронов третьего уровня и перемещения их на ^-подуровень. Заметим, что возможны и другие валентные состояния серы.

Элементы, у которых заполняется s-подуровень, называются «-элементами. Аналогично образуется последовательность р- элементов. Элементы s- и р-подуровней входят в главные подгруппы. Элементы побочных подгрупп - это ^-элементы (неправильное название - переходные элементы).

Удобно подгруппы обозначать символами электронов, благодаря которым образовались входящие в подгруппу элементы, например s" -подгруппа (водород, литий, натрий и др.) или //-подгруппа (кислород, сера и др.).

Если периодическую таблицу построить так, чтобы номера периодов повышались снизу вверх, а в каждую электронную ячейку помещать сначала по одному, а затем по два электрона, получится длиннопериодная периодическая таблица, напоминающая по форме диаграмму распределения электронов по энергетическим уровням и подуровням.

Возрастает и при n®¥ , E®0.

Уровни значений полной энергии атома водорода представлены на рис.77.

С возрастанием квантового числа увеличивается расстояние (радиус орбиты, по которой движется электрон), а полная и потенциальная энергия стремится к нулю. Кинетическая энергия также стремится к нулю и область E > 0 соответствует состоянию свободного электрона.

Кроме главного квантового числа n = 1, 2, 3 состояние атома характеризуется орбитальным l = 0, 1, 2, n-1, определяющим форму орбиты, магнитным m 1 = -1, -1, 0, +1, +1 (ориентация орбиты в пространстве), магнитным спиновым m s = -1/2; +1/2 (собственное вращение электрона в атоме).

То есть для одинакового главного квантового числа существует множество состояний электрона (энергетических состояний), распределение, которых удовлетворяет двум принципам:

1. В атоме состояние всех электронов различны, то есть не может быть электронов, имеющих одинаковую комбинацию квантовых чисел (принцип исключения ) - установлен в 1925 году швейцарским физиком В. Паули ].

2. Распределение электронов в атоме должно соответствовать минимуму энергии атома (принцип минимума энергии ).

Общее число электронов в атоме определяется зарядом его ядра, выраженным через элементарный заряд. У атома с минимальной энергией (невозбужденного) электроны заполняют ближайшие к ядру слои, имеющим n оболочек (от 0 до n-1) с определенным количеством электронов в каждой из них.

Построение этой теории стало возможным благодаря тщательным исследованиям спектров излучения различных газов (спектров излучения атомов), в результате которых были обнаружены спектральные линии, расположенные по определенной закономерности. В атоме водорода, например, эта закономерность определена формулой Бальмера-Ридберга

, (170)

где с -1 - постоянная Ридберга , n и n 0 - квантовые числа, соответствующие начальному (до излучения) и конечному (после излучения) энергетическим состояниям атома.

При переходе электрона с одной стационарной орбиты на другую (ближнюю к ядру) атом излучает квант энергии, равный разности энергий атома до и после излучения .

В спектре можно выделить группы линий, которые получили название спектральных серий. Каждая серия соответствует переходам возбужденного атома на один и тот же энергетический уровень (рис.78)

Серия Лаймана расположена в ультрафиолетовой части спектра. Она образуется в результате перехода электронов с верхних энергетических уровней на основной (n=1). Из формулы (45) следует


, n= 2,3,4…… (171)

Интенсивность возрастает с уменьшением длины волны.

Серия Бальмера находится в видимой и близкой к ультрафиолетовой областях спектра. Она обнаружена в 1885 году швейцарским физиком Бальмером и является, по сути, началом построения квантовой теории атома. Из (22) для этой серии следует

, n= 3,4,5….. (172)

Серия Пашена находится в инфракрасной области спектра. Она возникает при переходе электронов на третий энергетический уровень. Из (22) следует

, n= 4,5,6….. (173)

Существуют и другие серии, однако спектр ограничен, так как энергетические уровни атома по мере увеличения главного квантового числа сближаются и вероятность перехода между ними мала, поэтому они практически не наблюдаются.

Основные параметры спектральных линий представлены в таблице 2.

Таблица 2 - Основные параметры спектральных линий

В спектральном анализе используются как спектры излучения (эмиссионные) - спектральный анализ, так и спектры поглощения - абсорбционный анализ. Внешний вид спектров разнообразен и определяется источником излучения. Различают три основных типов спектров - сполошные, линейчатые и полосатые (см. глава 1 часть III).

В сплошном спектре имеются все длины волн (цвета) непрерывно изменяющиеся от длинноволновой части спектра к коротковолновой. Они образуются в результате совокупности многих взаимодействий между собой молекул и атомов при их хаотическом движении.

Линейчатые спектры состоят из ряда линий, каждой из которых соответствует определенная частота излучения. Они характерны для возбужденных атомов, не взаимодействующих друг с другом.

Полосатые спектры образуются молекулами. Излучение вызвано как электронными переходами в атомах, так и колебательными движениями самих атомов в молекулах. Эти спектры состоят из большого числа линий расположенных отдельными группами. Сложность молекулярных спектров обусловлена более сложным внутримолекулярным движением.

Квантовая теория строения атома достаточно убедительно объясняет такие физические явления как люминесценция, фотоэффект и световое давление, а также все наблюдаемые закономерности теплового излучения.

Опыты по рассеянию - частиц обнаружили существование в атомах тяжелого положительного ядра и электронной оболочки. Дальнейшие сведения о свойствах атомов дало изучение таких атомных процессов, которые сопровождаются изменением внутренней энергии атома. Сюда относятся столкновения атомов с электронами, испускание и поглощение света атомами и др. Исследуя эти процессы, удалось установить своеобразные и очень важные закономерности, которым подчиняется внутренняя энергия атомов.

Столкновения электронов с атомами. Наиболее простые условия для изучения передачи энергии от электронов к атомам могут быть осуществлены в устройстве, изображенном на рис. 359. Из трубки 1 выкачан воздух, и в нее введено небольшое количество одноатомных паров какого-нибудь вещества, например ртути. Электроны, испускаемые накаленным катодом 2, ускоряются разностью потенциалов действующей между катодом 2 и металлической сеткой 4. Благодаря очень малой концентрации атомов электроны пролетают короткий путь между катодом и первой сеткой без столкновений и приобретают энергию .

Рис. 359. Устройство для измерения потери энергии электроном при движении в парах ртути: 1 – стеклянная трубка заполненная парами ртути (давление тысячи доли ), 2 – накаленный катод (нагреватель на чертеже не указан); 3 – анод, 4 и 5 – редкие металлические сетки, соединенные между собой, и ускоряющая и тормозящая разность потенциалов

За первой сеткой 4 на пути между нею и второй сеткой 5 электрическое поле равно нулю, так как сетки находятся при одинаковом потенциале, и энергия электрона может измениться только за счет соударения с атомом. Путь между сетками выбирается достаточно длинным, так что каждый электрон испытывает хотя бы одно соударение. Далее, на пути между второй сеткой и анодом действует разность потенциалов , тормозящая электроны; ввиду этого до анода могут дойти только те электроны, энергия которых больше .

Постепенно увеличивая , определим запирающую разность потенциалов, т. е. то наименьшее значение , при котором электроны не доходят до анода и ток через гальванометр прекращается. Измерив запирающую разность потенциалов, можно установить, теряют ли электроны энергию при столкновениях с атомами. В самом деле, если на пути между сетками электроны не теряют энергии, то запирающая разность потенциалов будет равна ускоряющей; в противном случае она будет меньше. При этом, если каждый электрон отдает энергию , то превышение ускоряющего напряжения над тормозящим составит .

Опыты такого рода, проведенные с парами ртути, дали замечательный результат. Оказалось, что передача энергии от электронов к атомам существенно зависит от энергии электрона. Пока энергия электронов меньше, чем (т. е. ), электроны вовсе не теряют энергии при соударениях с атомами (т. е. ). Но когда энергия электронов достигает (или немного превышает) (), потеря энергии при соударениях сразу становится большой (т. е. ). При этом при столкновении электрон отдает, а значит, атом ртути воспринимает всегда о дну и ту же порцию энергии, равную . Очевидно, эта величина характеризует свойство атома ртути: энергия его может меняться только на конечную величину, равную . Меньшую энергию атом ртути не воспринимает.

При изучении механики, теплоты, электричества мы не встречались с подобным явлением: энергия любого тела или системы тел в принципе могла изменяться непрерывно, т. е. сколь угодно малыми порциями. В случае же атома ртути непрерывное изменение энергии невозможно - энергия ртутного атома меняется только прерывно, т. е. на конечную величину.

Делая соответствующие опыты с другими веществами, мы приходим к тому же заключению о прерывности {дискретности) энергетических состояний атомов.

Исследование оптических спектров. Как известно (§ 173), элементы в газообразном состоянии обладают линейчатыми спектрами испускания и поглощения света. Каждому элементу свойственны определенные спектральные линии, отличные от линий других элементов. Так как атомы газа находятся в среднем на больших расстояниях и не влияют друг на друга, частоты линейчатого спектра элемента должны определяться свойствами отдельного атома этого элемента.

В гл. XXI мы выяснили, что световая энергия существует в виде мельчайших неделимых порций - квантов; атомы должны, следовательно, изучать и поглощать свет такими же порциями, квантами. Энергия кванта пропорциональна частоте света , т. е. равна , где - постоянная Планка. Энергия испущенного атомом кванта по закону сохранения энергии равна разности энергий атома до после излучения, т. е.

где - энергия начального состояния атома (до излучения); - энергия конечного состояния атома (после излучения).

Соотношение (204.1) связывает изменение энергии атома при испускании или поглощении света с частотой последнего . Если бы энергия атома могла испытывать всевозможные изменения, то в атомном спектре присутствовали бы всевозможные частоты и он был бы сплошным подобно спектру раскаленного твердого тела. В действительности же атомный спектр (т. е. спектр испускания или поглощения одноатомного газа) не сплошной, а линейчатый. Он содержит только некоторые определенные характерные для данного атома частоты. Следовательно, энергия атома не может испытывать всевозможные, любые изменения. Энергия атома может изменяться только на некоторые определенные значения. Зная спектр вещества, нетрудно найти эти значения с помощью соотношения (204.1).

Так, например, спектр поглощения ртутного пара содержит следующие линии (в порядке убывания длин волн); и т. д. Подставляя в (204.1), находим для первой линии

Для второй и третьей линий получаем соответственно и . Атом ртути может, таким образом, воспринимать энергию только в виде порций, равных и т. д. Наименьшая воспринимаемая порция оказывается равной в согласии с результатом, полученным из опытов по соударениям электронов с атомами.

Итак, оба рассмотренных нами класса явлений - оптические спектры и взаимодействие атомов с электронами - указывают на прерывный (дискретный) характер внутренней энергии атомов. Энергия атома не может изменяться непрерывно. Она изменяется скачками на определенные, конечные порции, различные для разных атомов. Отсюда следует, что энергия атома не может быть любой, а может принимать только некоторые избранные значения, характерные для каждого атома. Возможные значения внутренней энергии атома получили название энергетических или квантовых уровней.

Схема энергетических уровней атома водорода, построенная на основании спектральных данных, изображена на рис. 360 в виде ряда параллельных линий. Расстояние между двумя линиями равно разности энергий двух состояний водородного атома и, следовательно, пропорционально частоте кванта, излучаемого при переходе из одного состояния в другое (более низкое). Поэтому расстояния между уровнями выражают в некотором масштабе частоты спектральных линий водорода.

на уровень и т. д. (см. также § 175)

Атом, находящийся в одном из высших энергетических состояний (обозначенных номером на рис. 360), через небольшой промежуток времени (около ) перейдет в более бедное энергией состояние, испуская соответствующий квант. Из низшего энергетического состояния атом не может самопроизвольно (без сообщения энергии извне) перейти в другое состояние. Следовательно, низшее состояние является устойчивым). При нормальных условиях все атомы находятся в низшем энергетическом состоянии, и газ не светится.

Сообщая атому энергию, мы можем возбудить его, т. е. перевести из нормального (низшего) состояния в одно из высших энергетических состоянии. В случае водорода расстояние от низшего энергетического уровня до ближайшего высшего уровня составляет . Это наименьшая порция энергии и, которую находящийся в низшем состоянии водородный атом может поглотить. Меньшей энергии атом водорода не может воспринять, ибо у него не существует состояний, энергия которых отличается от энергии нормального состояния меньше чем на . Для атома ртути аналогичная величина равна, как мы видели, .

Данная статья рассказывает, когда были обнаружены энергетические уровни. А также, каким образом их объяснили и как применяется такое свойство вещества, как квантование энергии электрона в атоме.

Молния и мрамор

Строение веществ интересовало человечество с тех пор, как появилась возможность задавать абстрактные вопросы, не беспокоясь о пропитании. Такие грозные явления, как молнии, наводнения, засухи, вызывали ужас. Неспособность объяснить происходящее вокруг порождала представление о гневных богах, которые требовали жертв. И каждый день люди стремились каким-то образом научиться предсказывать погоду, чтобы быть готовыми к очередному катаклизму. О том, что вещества состоят из очень маленьких частиц, догадались еще древние греки. Они заметили, что мраморные ступени, по которым за десятилетия прошло много людей, меняют форму, а значит, каждая ступня забирает с собой какую-то часть камня. От этого открытия до понятия о том, что такое энергетические уровни, очень далеко как по времени, так и по объему знаний. Однако именно то замечание, сделанное более трех тысяч лет назад, привело нашу науку к современному виду.

Резерфорд и Бор

В начале двадцатого века благодаря опытам с электричеством уже было известно, что минимальной частицей, которая несет все химические свойства вещества, является атом. В целом он был электронейтрален, однако в нем находились положительные и отрицательные элементы. Ученым необходимо было выяснить, как они распределяются. Были предложены несколько моделей, одна из которых называлась даже «булочка с изюмом». Знаменитый опыт Резерфорда показал, что в центре атома находится тяжелое положительное ядро, тогда как отрицательный заряд сосредоточен в маленьких легких электронах, которые вращаются на периферии. Энергетические уровни электронов в атоме и процесс их открытия привели физику к прорыву. Согласно уравнениям Максвелла, любой движущийся заряженный объект порождает поле, непрерывно излучая в пространство энергию. Таким образом, возник вопрос: почему в атомах электроны вращаются, но не излучаются и не падают на ядро, теряя энергию? Благодаря постулатам Бора стало ясно, что электроны занимают в атоме определенные энергетические уровни, и, находясь на этих стабильных орбитах, они не теряют энергию. Этот теоретический тезис нуждался в физическом обосновании.

Планк и лазеры

Когда Макс Планк, пытаясь упростить решение некоторых уравнений, ввел понятие кванта, в физике наступила новая эра. Она называется неклассическим периодом и связана с целым рядом существенных открытий, которые кардинально изменили жизнь человечества. Как пенициллин в медицине, квант в физике перевернул весь строй знаний. Примечательно, что новые формулы не отрицали, а, наоборот, подтверждали прежние выводы. При условиях объемных тел, макрорасстояний, обычных скоростей они превращались в привычные и понятные законы. Квантовая физика помогла ответить на многие вопросы, в том числе почему в атоме существуют энергетические уровни электронов. Стало ясно, что переходить с одной орбиты на другую электроны могут рывком. При этом, в зависимости от направления скачка, происходило либо поглощение, либо излучение энергии. Многие свойства веществ строятся именно на этих скачкообразных переходах. Благодаря тому, что в атомах существуют энергетические уровни, работают лазеры, существует спектроскопия, возможно создание новых материалов.

Волна и фотон

Однако само явление квантования энергии не дает четкого объяснения того, почему какие-то уровни стабильны и отчего зависит расстояние от орбиты до ядра в атоме. На помощь пришла нестандартная идея. Началось все с несоответствия результатов разных экспериментов над одними и теми же объектами. В одних случаях они вели себя как частицы, которые обладают массой и, следовательно, инерцией: двигали пластины, вращали лопасти. В других - как набор волн, которые способны пересекаться, гасить или усиливать друг друга (например, фотоны, носители света). В итоге ученым пришлось признать: электроны - это и частицы, и волны. Так называемый корпускулярно-волновой дуализм объяснил энергетические уровни атома. Как волна, электрон, который движется по кругу, накладывается сам на себя. Таким образом, если максимум «головы» совпадает с минимумом «хвоста», волна затухает. На определенных расстояниях до центра максимумы совпадают, и электрон может существовать, как бы непрерывно поддерживая себя, создавая энергетические уровни атома.

Химия и электрон

В процессе изучения химических свойств веществ выяснилось, что уровни у каждого из них - свои. То есть у гелия картина иная, чем у водорода, хотя их атомные номера отличаются всего лишь на единицу. Энергетические уровни атомов химических элементов зависят от их общего количества. То есть выходит, что верхние электроны как бы «давят» на нижние уровни, вынуждая их сдвигаться. У строения энергетической оболочки атома есть свои закономерности, которые определяются четырьмя главными квантовыми числами. Зная их, несложно для каждого вида химического элемента рассчитать энергетические уровни электронов.

Статьи по теме: