Атомный вес золота. Как открыли золото

Нет человека, который не видел бы золота в ювелирных изделиях. Ярко-желтый металл известен людям несколько тысяч лет. Однако в природе золото многолико. Размер его частиц колеблется от микрон до десятков сантиметров, цвет, из-за примесей, не всегда желтый. Встречается несколько минералов, похожих на золото по внешнему виду. Не зря существует поговорка «не все золото, что блестит». Чтобы успешно находить золото, ориентироваться в его ценности, не путать с похожими минералами, нужно знать свойства золота, где и как оно встречается в природе.

Физические свойства золота
Цвет золота ярко-желтый, если в нем отсутствуют примеси. Но чистое золото (и то не совсем) бывает почти исключительно в банковских слитках. В природном золоте и ювелирных изделиях всегда есть примеси серебра, меди и др., то есть фактически мы всегда имеем дело со сплавами золота с другими металлами. Цвет природного золота может зависеть от размера частиц. Например, золото Балейского месторождения Читинской области описано следующим образом: «Золото находится в жилах обычно в виде мельчайших частиц. Эти частицы иногда скапливаются, давая рыхлые сростки и скопления, видимые простым глазом. Внешний вид этих скоплений таков, что впервые видящий их наблюдатель не узнает в них золота. Это серо-зеленые пятна весьма непривлекательного вида с тусклым блеском или вовсе без блеска. Такого рода золото носит название «зеленого» золота. Гораздо реже встречается так называемое «желтое» золото, несколько отличающееся по виду и составу от «зеленого». Отношение количества «зеленого» к «желтому» примерно составляет 20:1.

В ювелирном деле золотом иногда называют сплавы, в которых собственно золота меньше 40 %. Сплав, известный как «белое золото», - это сплав золота с палладием. Десятая часть палладия придает слитку бело-стальной оттенок. Платина окрашивает золото в белый цвет даже интенсивнее палладия. Никель тоже позволяет получить золотые сплавы белого цвета с едва уловимым желтым оттенком. Из белого золота изготавливают ювелирные украшения с бриллиантами. Такая оправа прекрасно отражает блеск камней и будто дополнительно их освещает. По сравнению с желтым белое золото более стойко к воздействию атмосферы. Таким образом, цвет сплавов зависит от количества и состава примесей (табл.1).

Табл.1. Цвет золота в зависимости от количества и состава примесей

Доля золота, %

Доля примесей, %

Основной состав примесей

Цвет сплава

100,0

желтый

96,0

Медь

желтый

Медь

красный

75,0

25,0

медь, серебро, никель; медь, серебро

желтый

никель, цинк, медь; палладий, серебро, медь

белый

50,0 - 58,0

42-50

медь, серебро

красный

серебро, медь

желтый

серебро, медь

зеленый

37,5

62,5

медь, серебро

красный

серебро, палладий, медь

розовый

Золото - очень мягкий металл, его твердость 2,5-3,0 по 10-балльной шкале твердости (шкале Мооса). В этой шкале самое твердое вещество - алмаз. Его твердость равна 10. Самый мягкое вещество - мел. Его твердость - 1. Твердость стекла - 5, хорошей стали - 4,5. В полевых условиях твердость проверяют, прежде всего, с помощью ножа. Его острием проводят по поверхности изучаемого минерала. Если нож оставляет царапину, значит твердость меньше 5. Золото, имеющее твердость 2,5-3,0, не только легко царапается, но и при значительном усилии режется ножом. На нем можно оставить след даже сильно прикусив зубами. «На зуб» раньше пробовали золотые монеты. На поддельных монетах из меди сделать отметину зубами невозможно, а на золотой монете имея крепкие зубы отметку поставить можно. Проверка на твердость - это важный тест для отличия золота от похожих по цвету металлов или минералов.

Золото легко полируется и обладает высокой отражательной способностью. Через очень тонкие листы золота отлично могут проходить солнечные лучи, при этом тепловая их часть будет отражаться. По этой причине, тонкие слои золота используются для тонированных стекол современных небоскребов в жарком климате. Это позволяет экономить энергию, необходимую на то, чтобы содержать интерьер таких зданий в прохладности в течение всех горячих летних месяцев. Подобные тонкие слои золота используются также в защитном шлеме космонавтов, чтобы отражать большой поток инфракрасных лучей в открытом космосе.

Золото обладает исключительной способностью распыляться, давать частицы, соизмеримые с длиной световой волны, уноситься тоннами в виде мельчайшей пыли в реках, рассеиваться по полу, стенам и мебели золотосплавочных лабораторий и исчезать из банковского обмена за счет истирания монет. При золотом обращении ежегодно терялось от 0,01 до 0,1% веса монеты.

В этих исключительных свойствах золота известный австрийский геолог Зюсс видел назревающий "золотой голод" и указывал на необходимость осторожно решать вопрос о золотом обращении как основе мирового хозяйства. Может быть, опасения Зюсса были преждевременны, однако их значение осталось в силе, хотя темпы приближения золотого истощения не оправдались.

Золото имеет чрезвычайно высокую пластичность (тягучесть) и ковкость (расковывается до толщины 8∙10 -5 мм), т.е. из одного грамма золота можно получить лист фольги площадью до 1м 2 . Благодаря высокой пластичности, золото может быть измельчено, искривлено, сдавлено, сжато, золоту можно придать различную форму, не ломая на части. Фактически, желтый металл может быть истолчен до полупрозрачности, может быть тонким, как лист бумаги, и оставаться таким же красивым и блестящим. Производство тонколистового (сусального) золота позволяет покрывать им купола церквей, отделывать дворцовые залы.

Из одного грамма золота можно вытянуть проволоку длинной 2610 м. Получаемая нить очень тонкая (диаметром 2∙10 -6 мм), что необходимо сегодняшней электронной индустрии, где нужно создавать электрические цепи в чипах очень маленьких размеров. Из-за высокой электрической проводимости и устойчивости к окислению, золото имеет большой спрос в электронной промышленности. Сейчас неудивительно найти золото в таких устройствах как телевизор, мобильный телефон, калькулятор, не говоря уже о более сложной электронике.

Высокая ковкость золота еще один признак, позволяющий отличить золото от похожих минералов. Например, если положить частицу золота на твердый камень и ударить по ней молотком, то она расплющится, а кусочек желтого пирита рассыплется на мелкие частички.

Температура плавления золота составляет 1063˚ С, кипения 2947˚ С. Расплавленное золото имеет бледно-зеленый цвет. Пары золота зеленовато-желтого цвета. Все металлы, входящие в состав сплава с золотом, понижают температуру его плавления. При нагревании золота и его сплавов выше температуры плавления золото начинает улетучиваться, и летучесть его тем выше, чем выше температура. Летучесть зо-лота в значительной мере возрастает также в том случае, когда в сплаве присутствуют другие металлы, обладающие летучими свойствами, например, цинк, мышьяк, сурьма, теллур, ртуть и др. Сплавы по своим свойствам не похожи на те металлы, из которых они образовались. Так, например, сплав золота с серебром обладает значительно большей твердостью, чем золото и серебро, но зато не имеет их ковкости и тягучести. То же самое дает и примесь меди.

Золото имеет еще одно отличительное качество, которое является, возможно, наиболее важным для золоторазведчика (кроме цены) - это плотность золота. Его плотность - 19,3 г/см 3 - означает, что оно весит в 19,3 раза больше, чем равный объем чистой воды. Более высокую плотность имеют только некоторые металлы платиновой группы (индий - 22,6 г/см 3). Частица золота в 2,5 раза тяжелее, чем такая же по размеру частица серебра, и приблизительно в 8 раз тяжелее куска кварца, который обычно находится рядом с золотом. 1 кг золота можно представить в виде куба с ребром 37,3 мм или шара диаметром 46,2 мм. Полстакана золотого песка, добытого из россыпного месторождения, также весит около килограмма. Высокая плотность золота - это свойство, которое чаще всего используется для его извлечения из породы.

Плотность самородного золота несколько ниже, чем химически чистого, и, в зависимости от примесей в нем серебра и меди, колеблется в пределах 18—18,5.

Табл. 2. Важнейшие физические свойства и диагностические признаки золота

Свойства

Значение

Цвет

желтый

Цвет черты (на неглазированной фарфоровой пластинке)

желтая

Блеск

металлический

Твердость по шкале Мооса

2,5-3,0

Плотность при температуре 20ºC

19,32 г/ см 3

Температура, плавления, град.С

Кипения

1063

2947

Удельная теплопроводность при температуре 0ºC , Вт/(м∙К)

311,48

Сопротивление при температуре 0º, Ом

2,065∙10 -8

Электропроводность по отношению к меди, %

Предел прочности отожженного золота при растяжении, МПа

100-140

Химические свойства золота.
Золото (Au, от латинского Aurum) - химический элемент 1-й группы периодической системы таблицы Менделеева, атомный номер 79. Почти все природное золото состоит из изотопа 197 Au. Валентность золота в химических соединениях обычно +1, +3. За прошедшие столетия химики (а до них алхимики) провели с золотом огромное количество различных экспериментов, и оказалось, что золото вовсе не так инертно, как об этом думают неспециалисты. Правда, сера и кислород, агрессивные по отношению к большинству металлов (особенно при нагревании), на золото не действуют ни при какой температуре. Исключение - атомы золота на поверхности. При 500-700°С они образуют чрезвычайно тонкий, но очень устойчивый оксид, не разлагающийся в течение 12 часов при нагреве до 800° С. Это может быть Au 2 O 3 или AuO(OH). Такой оксидный слой найден на поверхности крупинок самородного золота.

Не реагирует золото с водородом, азотом, фосфором, углеродом, а галогены с золотом при нагревании образуют соединения: AuF 3 , AuCl 3 , AuBr 3 и AuI. Особенно легко, уже при комнатной температуре, идет реакция с хлорной и бромной водой. С этими реактивами встречаются только химики. В быту опасность для золотых колец представляет иодная настойка - водно-спиртовый раствор иода и иодида калия:

2Au + I 2 + 2KI ® 2K.

Щелочи и большинство минеральных кислот на золото не действуют. На этом основан один из способов определения подлинности золота. Весь истолченный металл пересыпается в фарфоровую чашку, куда наливается азотная кислота в коли-честве, достаточном для покрытия всего металла. Чашку с кис-лотой и металлом, при непрерывном помешивании стеклянной палочкой, подогревают на примусе до кипения. Если при этом не происходит растворения металла и выделения пузырьков газа, то металл является золотом. Смесь концентрированных азотной и соляной кислот («царская водка») легко растворяет золото:

Au + HNO 3 + 4HCl ® H + NO + 2H 2 O.

После осторожного выпаривания раствора выделяются желтые кристаллы комплексной золотохлористоводородной кислоты HAuCl 4 ·3H 2 O. Царскую водку, способную растворять золото, знал еще арабский алхимик Гебер, живший в 9-10 веке. Менее известно, что золото растворяется в горячей концентрированной селеновой кислоте:

2Au + 6H 2 SeO 4 ® Au 2 (SeO4) 3 + 3H 2 SeO 3 + 3H 2 O.

В концентрированной серной кислоте золото растворяется в присутствии окислителей: иодной кислоты, азотной кислоты, диоксида марганца. В водных растворах цианидов при доступе кислорода золото растворяется с образованием очень прочных дицианоауратов:

4Au + 8NaCN + 2H 2 O + O 2 ® 4Na + 4NaOH;

эта реакция лежит в основе важнейшего промышленного способа извлечения золота из руд - цианирования.

Действуют на золото и расплавы из смеси щелочей и нитратов щелочных металлов:

2Au + 2NaOH + 3NaNO 3 ® 2Na + 2Na 2 O,

пероксиды натрия или бария: 2Au + 3BaO 2 ® Ba 2 + 3BaO,

водные или эфирные растворы высших хлоридов марганца, кобальта и никеля:

3Au + 3MnCl 4 ® 2AuCl 3 + 3MnCl 2 ,

тионилхлорид: 2Au + 4SOCl 2 ® 2AuCl 3 + 2SO 2 + S2Cl 2 , некоторые другие реагенты.

Интересны свойства мелкораздробленного золота. При восстановлении золота из сильно разбавленных растворов оно не выпадает в осадок, а образует интенсивно окрашенные коллоидные растворы - гидрозоли, которые могут быть пурпурно-красными, синими, фиолетовыми, коричневыми и даже черными. Так, при добавлении к 0,0075%-му раствору H восстановителя (например, 0,005%-го раствора солянокислого гидразина) образуется прозрачный голубой золь золота, а если к 0,0025%-му раствору H добавить 0,005%-й раствор карбоната калия, а затем по каплям при нагревании добавить раствор танина, то образуется красный прозрачный золь. Таким образом, в зависимости от степени дисперсности окраска золота меняется от голубой (грубодисперсный золь) до красной (тонкодисперсный золь).

При размере частиц золя 40 нм максимум его оптического поглощения приходится на 510-520 нм (раствор красный), а при увеличении размера частиц до 86 нм максимум сдвигается до 620-630 нм (раствор голубой). Реакция восстановления с образованием коллоидных частиц используется в аналитической химии для обнаружения малых количеств золота.

При восстановлении соединений золота хлоридом олова в слабокислых растворах образуется интенсивно окрашенный темно-пурпурный раствор так называемого кассиевого золотого пурпура (он назван так по имени Андреаса Кассия, стекловара из Гамбурга, жившего в 17 в.). Кассиев пурпур, введенный в расплавленную стеклянную массу, дает великолепно окрашенное рубиновое стекло, количество затрачиваемого при этом золота ничтожно. Кассиев пурпур применяется и для живописи по стеклу и фарфору, давая при прокаливания различные оттенки - от слаборозового до ярко-красного.

В геологических процессах подвижность золота связана с водными растворами, имеющими высокую температуру (сотни градусов) и находящимися под высоким давлением. Золото при этом может находиться в форме различных простых и смешанных комплексов: гидроксильных, гидроксохлоридных, гидросульфидных. В низкотемпературных гидротермальных условиях, а также в биосфере, миграция золота возможна в виде растворимых металлоорганических комплексов.

В нормальных природных условиях золото стойко к различным типам минеральных вод и атмосферной коррозии. Частицы золота практически не меняются с течением времени. Изделия из золота сделанные тысячи лет назад сохраняются практически неизменными в земле и морской воде. Со временем они не только не теряют своей ценности, но становятся дороже. Такая устойчивость дает основание относить золото к группе благородных металлов.

Проба золота.
Количественное содержание химически чистого золота (по массе) в природном твердом растворе или сплаве (изделии) выражается пробой. В международной практике применяются метрическая (в большинстве стран, в том числе и в России) и каратная системы проб.

При метрической системе содержание металла определяется числом его единиц в 1000 единицах лигатурной массы раствора (сплава), при каратной в 24 единицах. До 1927 года в СССР, а также в дореволюционной России, действовала золотниковая система проб, при которой содержание золота определялось количеством золотников в фунте лигатурной массы (1 русский фунт = 409,5 г = 96 золотникам; 1 золотник = 4,27 г = 96 долям; 1 доля = 44,4 мг).

В метрической системе химически чистому золоту соответствует 1000-я проба, а твердый раствор (сплав), например, 750-й пробы, содержит 750 частей химически чистого золота и 250 частей примесей (лигатуры), или же 75,0% золота и 25,0% примесей.

Расчетом устанавливается взаимное отношение и перевод различных систем проб. Например, 450-я метрическая проба изделия (сплава) соответствует:

450/1000 ´ 96= 43,2 золотниковой

и 550/1000 ´ 24= 10,8 каратной пробам.

Самородное золото обладает различной пробой (наиболее часто 940-900, 890-740, 680-600-й и крайне редко 550-й). Для производства ювелирно-бытовых изделий обычно используются золотые сплавы различной пробы, так как золото в чистом виде слишком мягкое и легко истирается.

Ювелирным сплавам за счет добавления лигатурных цветных металлов (меди, серебра, реже никеля, палладия, цинка, кадмия и др.) придаются требуемые для механической обработки свойства и желательный цвет. В таблице 3 указаны наиболее часто используемые для производства ювелирных украшений сплавы и соотношение различных систем обозначения их пробы, распространенные в бывшем СССР и России.

Табл.3. Пробы и основной состав лигатуры ювелирных золотых сплавов, принятых в бывшем СССР и Российской Федерации

Система обозначения проб

метрическая

золотниковая

каратная

1000

750*

583/585*

500*

375*

*Пробы Российской Федерации

Золото в природе.
Золото в небольших количествах содержится во многих горных породах. Среднее его содержание в литосфере (Кларк) составляет 4,3 мг/т.

Золото содержится в организмах и в растениях. Есть предположение, что золото имеет определенное значение для организма животных. В золе растений золото впервые обнаружено французским химиком Клодом Луи Бертолле в XVIII веке. По современным данным содержание золота в некоторых гумусовых почвах достигает 0,5 г/т. Растения, произрастающие на таких участках, поглощают золото, сосредотачивая его в корневой системе, стеблях, стволах и в ветвях. В настоящее время разработаны методы поиска месторождений (биогеохимические), основанные на выявлении ореолов с повышенным содержанием золота в золе растений.

Огромное количество золота содержится в гидросфере. Во всех видах пресных вод его среднее содержание составляет порядка 3∙10-9% (0,03 мг/т), но иногда многократно выше, например, в подземных водах золоторудных месторождений содержание золота достигает порядка 1 мг/т. На изменении содержания золота в подземных водах основан один из методов поиска золоторудных месторождений (гидрохимический метод).

В морских водах содержание золота также колеблется: в полярных морях - 0,05 мг/т, у берегов Европы - 1-3∙мг/т. Наиболее высокая концентрация золота отмечается в прибрежной зоне США - до 16 мг/т., в водах Карибского моря - 15-18 мг/т., в водах Мертвого моря - до 50 мг/т.

Океаны насыщаются золотом вследствие привноса его грунтовыми, поземными и поверхностными водами, за счет распыления метеоритов, выбросов вулканических веществ и ряда других естественных источников. Французскими исследователями было выяснено, что сицилийский вулкан Этна каждый день выбрасывает в виде мелких частиц более 2,5 кг и большая часть этого уходит в океан. По подсчетам каждый год в атмосфере Земли распыляется примерно 3,5 тыс. метеоритного вещества, содержащие примерно 18 кг золота, что составляет за миллион лет где-то 18 тыс.т. Поступление золота в океаны происходит также с речными и морскими взвесями, а также в виде растворимых металлоорганических комплексов. Циркулирующие на золотоносных площадях поверхностные и подземные водотоки содержат, как правило, золото, находящееся во взвешенном состоянии, или растворенное золото, которое может достигнуть океана. Особенно велик перенос золота речными системами. Специалисты посчитали, что только Амур в своих водах за год выносит в океан около 8,5 т золота.

Общее количество золота в водах Мирового океана оценивается в 25-27 млн.т. Это чрезвычайно много. Человечеством за все время добыто около 150 тыс.т. Ведутся изыскания технологий извлечения золота из воды океанов, запатентованы технические решения, но приемлемых экономических показателей добычи золота из воды пока не достигнуто.

В земной коре золото может находиться в сплошных горных массах— рудах или в разрушенных горных породах — россыпях. В первом случае оно называется рудным, а во втором — россыпным золотом. Россыпи обычно встречаются в долинах рек, ручейков или сухих логов и образуют более или менее мощные пласты, при-крытые слоем пустой породы, так называемыми торфами. Зо-лото находится в россыпях в виде кусочков, чешуек, зерен и пыли.

Золото в рудных и россыпных месторождениях встречается главным образом в сплавах с серебром, медью, железом и другими металлами. Кроме этих природных сплавов золота известны также платинистое и родистое золото, в состав которых соответственно входят платина и родий. Чаще всего в состав самородного зо-лота входит от 5 до 30 % серебра. Относительно редко, но все же встречается в природе сплав золота с 30—40% серебра, который называется электрумом. Довольно распространено в природе самородное медистое золото, состоящее из 74—80% золота, 2—16% серебра, 9—20% меди.

Больше всего в природе частиц золота размером от доли микрона до десятков микронов. Такие частицы называются дисперсными. Условно они делятся на грубодисперсные и тонкодисперсные (высокодисперсные). В грубодисперсных системах частицы имеют размеры от 1 мкм и выше, в тонкодисперсных — от 1 нм до 1 мкм (0,001 мм).

Дисперсные частицы золота есть в породах, в воде и в растениях. Такие частицы видны только в электронный микроскоп, их не удастся взвесить на лучших микроаналитических весах. Расчетная масса частицы размером 0,001 мм составляет всего 0,00000001 мг, а предел взвешивания лучших микроаналитических весов — 0,0001 мг. Количество мельчайших частиц золота несметное. В каждом грамме золота заключено больше 100 миллиардов таких частиц. При огромном количестве дисперсных частиц их извлечение представляет наибольшую трудность и обходится дороже всего.

Чрезвычайно много в природе также золотин размером порядка 0,01 мм. Самая крупная золотина этого класса (0,01 мм) имеет массу порядка 0,00001 мг и ее также невозможно взвесить на микроаналитических весах. В каждом грамме золота количество таких частиц превышает 100 миллионов. Несмотря на то, что золота мельче 0,01 мм в природе больше, чем любого другого, оно находится преимущественно в рассеянном состоянии. Иногда оно концентрируются в виде включений в некоторые минералы (пирит, арсенопирит и т.п.), но если свободное золото крупностью 0,01-0,1 мм попадает в речной поток, то оно преимущественно рассеивается. Мелкие легкие золотинки свободно переносятся во взвешенном состоянии даже при небольшой скорости течения.

Золото крупнее 0,1 мм относится к «гравитационному», то есть к такому, которое осаждается в воде под действием силы тяжести и образует скопления, выгодные для отработки - россыпные месторождения. Извлеченное из россыпей золото часто называют «золотой песок». Фактически так оно и есть, частицы золота легко пересыпаются и их можно насыпать в кожаный мешочек (раньше так носили в кармане или сумке), золотой песок можно ссыпать в бутылку (в ней удобно прятать золото) или в любую емкость.

Золотины размером 8 мм и более обычно имеют массу свыше 1 г и называются самородками. Различают самородки мелкие (1-10 г), средние (10-100 г), крупные (100-1000 г), весьма крупные (1-10 кг) и гигантские (более 10 кг). Однако иногда самородками называют также золотины «резко выделяющиеся по размерам среди других частиц металла», и нижний предел массы самородка принимают 0,1 грамма.

Самый крупный самородок золота найден в Австралии - “Плита Холтермана” (285 кг вместе с кварцем, чистого золота 83,3 кг); на Урале найден самородок золота “Большой треугольник” (36,2 кг). Большинство крупных самородков имеют свои имена (Табл.4).

Табл. 4. Крупнейшие самородки мира

Год находки

Место находки

Масса,

кг

Присвоенное название

Источник сведений

1842

Россия, Урал

36,2

«Большой треугольник»

В.В.Данилевский

1851

Австралия, шт.Новый Южный Уэльс

45,3

«Хандреуейт»

Дж.Салмон

1857

Австралия, Кингоуэр

65,7; 54

«Блестящий Баркли»

Дж.Салмон

1857

Австралия, шт.Виктория

«Донноли»

В.И.Соболевский

1858

Австралия, Балларат

«Желанный»

В.И.Соболевский

1868

Австралия, Балларат

«Канадец 1-й»

Дж.Салмон, В.И.Соболевский

1870

Австралия, шт.Виктория

60,7

нет

Дж.Салмон

1870

Калифорния

нет

Дж.Салмон

1872

Австралия, район Сиднея

285/83,2

«Плита Холтермана»

В.И.Соболевский

1873

Калифорния

108,8

нет

Дж.Салмон

1899

Западная Австралия

45,3

нет

Дж.Салмон

1901

Япония, о.Хоккайдо

«Японец»

В.И.Соболевский

1937

Австралия

«Золотой орел»

Из газет

1954

США, Калаверас

72,9

нет

Дж.Салмон

1954

Калифорния

36,3

«Оливер Мартин»

Дж.Салмон

1983

Бразилия, шт.Пара

39,5; 36

нет

Из газет

н.д.

Калифорния

88,4

нет

Дж.Салмон

н.д.

Австралия

75,4

нет

Д.С.Ньюбери

н.д.

Австралия, шт.Виктория

44,7

«Леди Хотэм»

Дж.Салмон

ХХ век

Западный Китай

нет

Дж.Салмон

н.д.

Австралия, шт.Виктория

«Канадец 2-й»

В.И.Соболевский

н.д.

Калифорния

35,6

«Посейдон 2-й»

В.И.Соболевский

В последние десятилетия самородки начали искать с помощью металлодетекторов (разновидность миноискателей). Крупнейший самородок найденый металлодетектором весит 27,2 кг. Его нашел в Австралии в штате Виктория Кевин Хиллер (Kevin Hillier) 26 сентября 1980 года. Самородок назван «Рука Судьбы». Его размеры: 47 см в длину, 20 см в ширину и 9 см толщиной, проба 926. Кевин продал свой самородок в 1981 году за 1 000 000 долларов в казино «Золотой Самородок» в Лас-Вегасе.

Трудно назвать другой металл, который в истории человечества сыграл бы большую роль, чем золото. Во все времена люди старались завладеть золотом хотя бы путем преступлений, насилий и войн. Начиная с первобытного человека, украшавшего себя золотыми блестками, намытыми в песках рек, и кончая современным промышленником, обладающим огромным производством, человек в упорной борьбе завладел частью природного богатства. Но эта часть золота ничтожна по сравнению с количеством распыленного в природе металла и с потребностями и желаниями самого человечества. Сегодня поиски золота и его месторождений идут все усиливающимся темпом, по добыче золота во всем мире работает не менее пяти миллионов человек, а добывается его около трех тысяч тонн ежегодно. Природа очень бережно хранит свои сокровища и упорно не отдает человеку этот металл. В наши дни создано большое количество золотодобывающей, самой современной техники, но наибольший эффект в золотодобыче дают все возрастающие знания человека о свойствах золота.

December 15th, 2013

Золото… Желтый металл, простой химический элемент с атомным номером 79. Предмет вожделения людей во все времена, мерило ценности, символ богатства и власти. Кровавый металл, порождение дьявола. Сколько человеческих жизней было погублено ради обладания этим металлом!? И сколько еще будет погублено?

В отличие от железа или, например, от алюминия, золота на Земле очень мало. За всю свою историю человечество добыло золота столько, сколько оно добывает железа за один день. Но откуда же этот металл появился на Земле?

Считается, что Солнечная система образовалась из остатков взорвавшейся когда-то в глубокой древности сверхновой. В недрах той древней звезды происходил синтез химических элементов тяжелее водорода и гелия. Но в недрах звезд не могут синтезироваться элементы тяжелее железа, и стало быть, золото не могло образоваться в результате термоядерных реакций в звездах. Так, откуда же этот металл вообще появился во Вселенной?

Похоже, астрономы теперь могут ответить на этот вопрос. Золото не может рождаться в недрах звезд. Но оно может образоваться в результате грандиозных космических катастроф, которые ученые буднично называют гамма-всплесками (ГВ).

Астрономы пристально наблюдали за одним из таких гамма-всплесков. Данные наблюдений дают достаточно серьезные основания считать, что эта мощная вспышка гамма-излучения произведена столкновением двух нейтронных звезд – мертвых ядер звезд, погибших в сверхновом взрыве. Кроме того, уникальное свечение, сохранявшееся на месте ГВ в течение нескольких дней, указывает на то, что во время этой катастрофы образовалось значительное количество тяжелых элементов, в том числе – золото.

«По нашим оценкам, количество золота, образовавшегося и выброшенного в пространство во время слияния двух нейтронных звезд, может сотавить более 10 лунных масс»,– сказал ведущий автор исследования Эдо Бергер из Гарвард-Смитсоновского астрофизического центра (CfA) во время пресс-конференции CfA в Кембридже, штат Массачусетс.

Гамма-всплеск (ГВ) – это вспышка гамма-излучения от чрезвычайно энергичного взрыва. Большинство ГВ обнаруживаются в очень отдаленных областях Вселенной. Бергер и его коллеги изучали объект GRB 130603B, находящийся на расстоянии 3,9 миллиардов световых лет. Это один из самых близких ГВ из замеченных до настоящего времени.

ГВ бывают двух видов – длинные и короткие, в зависимости от того, сколько длится вспышка гамма-лучей. Длительность вспышки GRB 130603B, зафиксированной спутником НАСА «Свифт», составила менее двух десятых секунды.

Хотя само гамма-излучение исчезло быстро, GRB 130603B продолжал светить в инфракрасных лучах. Яркость и поведение этого света не соответствовали типичному послесвечению, которое возникает при бомбардировке ускоренными частицами окружающего вещества. Свечение GRB 130603B вело себя так, как будто оно исходит из распадающихся радиоактивных элементов. Вещество, богатое нейтронами, выброшенное при столкновении нейтронных звезд, может превратиться в тяжелые радиоактивные элементы. Радиоактивный распад таких элементов порождает инфракрасное излучение, характерное для GRB 130603B. Именно это и наблюдали астрономы.

По вычислениям группы, во время взрыва было выброшено вещества с массой около одной сотой солнечной. И часть этого вещества была золотой. Примерно оценив количество золота, образовавшегося во время этого ГВ, и число таких взрывов, произошедших за всю историю Вселенной, астрономы пришли к предположению, что все золото во Вселенной, в том числе и на Земле, возможно, было образовано во время таких гамма-всплесков.

Вот еще одна интересная, но ужасно спорная версия:

В процессе формирования Земли расплавленное железо спускалось вниз к её центру, чтобы составить её ядро, увлекая с собой большинство драгоценных металлов планеты, таких как золото и платина. Вообще, драгметаллов в ядре хватит на то, чтобы покрыть их слоем четырёхметровой толщины всю поверхность Земли.

Перемещение золота в ядро должно было лишить внешнюю часть Земли этого сокровища. Однако распространённость благородных металлов в силикатной мантии Земли превышает расчётные величины в десятки и тысячи раз. Уже обсуждалась идея о том, что это свалившееся на голову сверхизобилие имеет своей причиной катастрофический метеоритный ливень, который настиг Землю после образования её ядра. Вся масса метеоритного золота, таким образом, вошла в мантию обособленно и не пропала глубоко внутри.

Для проверки этой теории доктор Маттиас Виллболд и профессор Тим Эллиот из Бристольской изотопной группы Школы наук о Земле подвергли анализу собранные в Гренландии профессором Оксфордского университета Стивеном Мурбатом породы, возраст которых насчитывает около 4 миллиардов лет. Эти древние камни дают уникальную картину состава нашей планеты вскоре после формирования ядра, но до предполагаемой метеоритной бомбардировки.

Затем ученые начали исследовать содержание вольфрама-182 и в метеоритах, которые называют хондритами, – это один из главных строительных материалов твердой части Солнечной системы. На Земле нестабильный гафний-182 распадается cобразованием вольфрама-182. А вот в космосе из-за космических лучей этот процесс не происходит. В результате стало ясно, что образцы древних горных пород содержат на 13% больше вольфрама-182 по сравнению с более молодыми горными породами. Это дает геологам основание утверждать, что когда Земля уже имела твердую кору, на нее обрушилось около 1 миллиона триллионов (10 в 18-й степени) тонн астероидного и метеоритного вещества, которое имело более низкое содержаниевольфрама-182, но при этом гораздо большее, чем в земной коре, содержание тяжелых элементов, в частности золота.

Будучи весьма редким элементом (на килограмм породы приходится всего около 0,1 миллиграмма вольфрама), подобно золоту и другим драгоценным металлам он должен был войти в ядро в момент его формирования. Как и большинство других элементов, вольфрам подразделяется на несколько изотопов – атомов со сходными химическими свойствами, но слегка различающимися массами. По изотопам можно с уверенностью судить о происхождении вещества, а смешивание метеоритов с Землей должно было оставить характерные следы в составе её изотопов вольфрама.

Доктор Виллболд заметил в современной породе сокращение количества изотопа вольфрама-182 на 15 миллионных долей по сравнению с гренландской.

Это небольшое, но многозначительное изменение превосходно согласуется с тем, что и требовалось доказать – что избыток доступного золота на Земле является положительным побочным эффектом метеоритной бомбардировки.

Доктор Виллболд говорит: «Извлечение вольфрама из каменных образцов и анализ с необходимой точностью его изотопного состава были крайне сложной задачей, принимая во внимание небольшое количество имеющегося в камнях вольфрама. Фактически, мы стали первой в мире лабораторией, которая успешно выполнила измерения такого уровня».

Упавшие метеориты смешались с земной мантией в ходе гигантских конвекционных процессов. Задачей-максимум на будущее является выяснение продолжительности этого перемешивания. Впоследствии геологические процессы сформировали континенты и привели к концентрации драгоценных металлов (а также вольфрама) в залежах руды, которая добывается в наши дни.

Доктор Виллболд продолжает: «Результаты нашей работы показывают, что большая часть драгоценных металлов, на которых основывается наша экономика и многие ключевые производственные процессы, была занесена на нашу планету по счастливой случайности, когда Землю накрыло где-то 20 квинтиллионами тонн астероидного вещества».

Таким образом, мы обязаны своими золотыми запасами настоящему потоку ценных элементов, которые оказались на поверхности планеты благодаря массированной астероидной «бомбардировке». Потом в ходе развития Земли в течение последних миллиардов лет золото вступило в круговорот пород, появляясь на ее поверхности и вновь скрываясь в глубинах верхней мантии.

Но теперь ему путь к ядру закрыт, и большое количество этого золота просто обречено оказаться в наших руках.

Слияние нейтронных звезд

И еще мнение другого ученого:

Происхождение золота оставалось до конца невыясненным, поскольку, в отличие от более легких элементов, таких как углерод или железо, оно не может образовываться непосредственно внутри звезды, — признался один из исследователей центра Эдо Бергер.

Ученый пришел к этому выводу, наблюдая за гамма-всплесками — масштабными космическими выбросами радиоактивной энергии, вызванными столкновением двух нейтронных звезд. Гамма-всплеск был замечен космическим аппаратом НАСА Swift и длился всего двух десятых секунды. А после взрыва осталось свечение, которое постепенно исчезало. Свечение же при столкновении таких небесных тел свидетельствует о выбросе большого количества тяжелых элементов, утверждают специалисты. А доказательством того, что после взрыва образовались тяжёлые элементы, можно считать инфракрасный свет в их спектре.

Дело в том, что нейтронно-богатые вещества, выброшенные при коллапсе нейтронных звезд, могут генерировать элементы, претерпевающие радиоактивный распад, при этом испуская свечение преимущественно в инфракрасном диапазоне, — объяснял Бергер. — И мы полагаем, что при гамма-всплеске выбрасывается примерно одна сотая доля материала солнечной массы, в том числе золото. Причем, количество золота, произведенного и выброшенного во время слияния двух нейтронных звезд, может быть сравнимо с массой 10 Лун. А стоимость такого количества драгоценного металла равнялась бы 10 октильонам долларов — это 100 трлн в квадрате .

Для справки, октильон — это миллион септиллионов или миллион в седьмой степени; число, равное 1042 и записываемое в десятичной системе как единица с 42 нулями.

Также сегодня учеными установлен тот факт, что практически все золото (и прочие тяжелые элементы) на Земле — космического происхождения. Золото, оказывается, попало на Землю в результате астероидной бомбардировки, которая произошла в далекие времена после застывания коры нашей планеты.

Практически все тяжелые металлов «утонули» в мантии Земли на самом раннем этапе формирования нашей планеты, именно они образовали твердое металлическое ядро в центре Земли.

Алхимики XX века

Еще в 1940 году американские физики А. Шерр и К. Т. Бэйнбридж из Гарвардского университета начали облучать нейтронами соседние с золотом элементы – ртуть и платину. И вполне ожидаемо, облучив ртуть, получили изотопы золота с массовыми числами 198, 199 и 200. Их отличие от естественного природного Au-197 в том, что изотопы неустойчивы и, испуская бета-лучи, максимум за несколько дней опять превращаются в ртуть с массовыми числами 198,199 и200.

Но все равно это было здорово: впервые человек смог самостоятельно создавать нужные элементы. Вскоре стало понятно, как вообще можно получить настоящее, стабильное золото-197. Это можно сделать, используя только изотоп ртути-196. Этот изотоп достаточно редок – его содержание в обычной ртути с массовым числом 200 составляет около 0,15%. Его надо бомбардировать нейтронами, чтобы получить малоустойчивую ртуть-197, которая, захватив электрон, и превратится в стабильное золото.

Однако расчеты показали, что если взять 50 кг природной ртути, то в ней будет всего 74 грамма ртути-196. Для трансмутации в золото реактор может дать поток нейтронов 10 в 15-й степени нейтронов на кв. см в секунду. С учетом того, что в 74 г ртути-196 содержится около 2,7 на 10 в 23-й степени атомов, для полной трансмутации ртути в золото потребовалось бы четыре с половиной года. Это синтетические золото стоит бесконечно дороже золота из земли. Но это означало, что для образования золота в космосе тоже нужны гигантские потоки нейтронов. И взрыв двух нейтронных звезд как раз все объяснял.

И еще подробности про золото:

Немецкие ученые подсчитали, что для того, чтобы на Землю был занесен присутствующий сегодня объем драгметаллов, понадобились всего 160 металлических астероидов, диаметром около 20км каждый. Специалисты отмечают, что геологический анализ различных благородных металлов показывает, что все они появились на нашей планете примерно в одно и то же время, однако на самой Земле не было и нет условий для их естественного происхождения. Именно это натолкнуло специалистов на космическую теорию появления благородных металлов на планете.

Слово «gold», по мнению лингвистов, произошло от индо-европейского термина «желтый» как отражение наиболее заметной характеристики этого металла. Этот факт находит свое подтверждение в том, что произношение слова «gold» на разных языках похоже, например Gold (по-английски), Gold (по-немецки), Guld (по-датски), Gulden (по-голландски), Gull (по-норвежски), Kulta (по-фински).

Золото в земных недрах


В ядре нашей планеты содержится в 5 раз больше золота, чем во всех остальных породах, доступных для разработки, вместе взятых. Если бы все золото ядра Земли вылилось на поверхность, то покрыло бы всю планету слоем толщиной полметра. Интересно, что в каждом литре воды всех рек, морей и океанов растворено около 0,02 миллиграмма золота.

Определено, что за все время добычи благородного металла из недр было извлечено около 145 тысяч тонн (по данным других источников – около 200 тысяч тонн). Производство золота растет из года в год, но основной рост пришелся на конец 1970-х годов.

Чистота золота определяется различными путями. Carat (в США и Германии пишется «Karat») первоначально был единицей массы на основе семян рожкового дерева «carob tree» (созвучно со словом «карат»), используемого древними торговцами Среднего Востока. Карат сегодня в основном используется при измерении веса драгоценных камней (1 карат = 0,2 грамма). Чистоту золота также можно измерить в каратах. Эта традиция восходит к древним временам, когда карат на Ближнем Востоке стал мерилом чистоты золотых сплавов. Британский карат золота – неметрическая единица оценки содержания золота в сплавах, равная 1/24 массы сплава. Чистое золото соответствует 24 каратам. Чистота золота сегодня измеряется также и понятием химической чистоты, то есть тысячных долях чистого металла в массе сплава. Так, 18 карат – это 18/24 и в пересчете на тысячные доли соответствует 750-й пробе.

Добыча золота


В результате природного концентрирования примерно лишь 0,1% всего золота, содержащегося в земной коре, доступно, хотя бы теоретически, для добычи, однако благодаря тому, что золото встречается в самородном виде, ярко блестит и легко заметно, оно стало первым металлом, с которым познакомился человек. Но природные самородки редки, поэтому самый древний способ добычи редкого металла, основанный на большой плотности золота, – промывание золотоносных песков. «Добыча промывного золота требует только механических средств, а потому немудрено, что золото известно было даже дикарям и в самые древние исторические времена» (Д.И.Менделеев).

Но богатых золотых россыпей почти не осталось, и уже в начале XX века 90% всего золота добывали из руд. Сейчас многие золотые россыпи практически исчерпаны, поэтому добывают, в основном, рудное золото, добыча которого во многом механизирована, но производство остается трудным, так как часто находится глубоко под землей. В последние десятилетия постоянно росла доля более рентабельных открытых разработок. Месторождение экономически выгодно разрабатывать, если в тонне руды содержится всего 2-3г золота, а при содержании более 10 г/т оно считается богатым. Существенно, что затраты на поиск и разведку новых золотых месторождений составляют от 50 до 80% всех затрат на геологоразведочные работы.

Сейчас крупнейшим поставщиком золота на мировой рынок является Южная Африка, где шахты достигли уже 4-километровой глубины. В ЮАР находится самый большой в мире рудник Вааль-Рифс в Клексдорпе. ЮАР – единственное государство, где золото – главный продукт производства. Там его добывают на 36 крупных рудниках, на которых трудятся сотни тысяч человек.

В России добыча золота ведется из рудных и россыпных месторождений. О начале его добычи мнения исследователей расходятся. По-видимому, первое отечественное золото было добыто в 1704 году из Нерчинских руд вместе с серебром. В последующие десятилетия на Московском монетном дворе золото выделяли из серебра, которое содержало немного золота в виде примеси (около 0,4%). Так, в 1743-1744гг. «из золота, обретающегося в серебре, выплавленном на Нерчинских заводах», было изготовлено 2820 червонцев с изображением Елизаветы Петровны.

Первую в России золотую россыпь обнаружил весной 1724 года крестьянин Ерофей Марков в районе Екатеринбурга. Ее эксплуатация началась только в 1748 года. Добыча уральского золота медленно, но неуклонно расширялась. В начале XIX века были открыты новые месторождения золота в Сибири. Открытие (в 1840-е гг.) Енисейского месторождения вывело Россию на первое место в мире по добыче золота, но еще до этого местные охотники-эвенки делали из золотых самородков пули для охоты. В концу XIX века Россия добывала в год около 40т золота, из них 93% – россыпного. Всего же в России до 1917 год было добыто, по официальным данным, 2754т золота, но по оценкам специалистов – около 3000т, причем максимум пришелся на 1913 год (49т), когда золотой запас достиг 1684т.

С открытием богатых золотоносных районов в США (Калифорния, 1848г.; Колорадо, 1858г.; Невада, 1859г.), Австралии (1851г.), Южной Африке (1884г.), Россия утратила свое первенство в добыче золота, несмотря на то, что были введены в эксплуатацию новые месторождения, главным образом в Восточной Сибири.
Добыча золота велась в России полукустарным способом, разрабатывались преимущественно россыпные месторождения. Свыше половины золотых приисков находилось в руках иностранных монополий. В настоящее время доля добычи из россыпей постепенно снижается, составляя к 2007 году немного более 50 тонн. Менее 100 тонн добывается из рудных месторождений. Окончательная переработка золота ведется на аффинажных заводах, ведущим из которых является Красноярский завод цветных металлов. На его долю приходится аффинаж (очистка от примесей, получение металла пробы 99,99%) около 50% добываемого золота и большая часть платины и палладия, добываемых в России.

. А например вы знаете Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Истинная, эмпирическая, или брутто-формула: Au

Молекулярная масса: 196,967

Зо́лото - элемент 11 группы (по устаревшей классификации - побочной подгруппы первой группы), шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 79. Обозначается символом Au (лат. Aurum). Простое вещество золото - благородный металл жёлтого цвета.

История

Происхождение названия

Праславянское «*zolto» («золото») родственно лит. geltonas «жёлтый», латыш. zelts «золото»; с другим вокализмом: готск. gulþ, нем. gold, англ. gold; далее санскр. हिरण्य (híraṇya IAST), авест. zaranya, осет. zærījnæ «золото», также санскр. हरि (hari IAST) «жёлтый, золотистый, зеленоватый», от праиндоевропейского корня *ǵʰel- «жёлтый, зелёный, яркий». Отсюда же названия цветов: «жёлтый», «зелёный». Латинское aurum означает «жёлтое» и родственно с «Авророй» (Aurora) - утренней зарёй.

Физические свойства

Чистое золото - мягкий металл жёлтого цвета. Красноватый оттенок некоторым изделиям из золота, например, монетам, придают примеси других металлов, в частности, меди. В тонких плёнках золото просвечивает зелёным. Золото обладает высокой теплопроводностью и низким электрическим сопротивлением. Золото - очень тяжёлый металл: плотность чистого золота равна 19,32 г/см³ (шар из чистого золота диаметром 46,237 мм имеет массу 1 кг). Среди металлов по плотности занимает седьмое место после осмия, иридия, платины, рения, нептуния и плутония. Сопоставимую с золотом плотность имеет вольфрам (19,25). Высокая плотность золота облегчает его добычу, отчего даже простые технологические процессы - например, промывка на шлюзах, - могут обеспечить высокую степень извлечения золота из промываемой породы. Золото - очень мягкий металл: твёрдость по шкале Мооса ~2,5, по Бринеллю 220-250 МПа (сравнима с твёрдостью ногтя). Золото также высокопластично: оно может быть проковано в листки толщиной до ~0,1 мкм (100 нм) (сусальное золото); при такой толщине золото полупрозрачно и в отражённом свете имеет жёлтый цвет, в проходящем - окрашено в дополнительный к жёлтому синевато-зеленоватый. Золото может быть вытянуто в проволоку с линейной плотностью до 2 мг/м. Температура плавления золота 1064,18 °C (1337,33 К), кипит при 2856 °C (3129 К). Плотность жидкого золота меньше, чем твёрдого, и составляет 17 г/см 3 при температуре плавления. Жидкое золото довольно летучее, оно активно испаряется задолго до температуры кипения. Линейный коэффициент теплового расширения - 14,2·10-6 К−1 (при 25 °C). Теплопроводность - 320 Вт/м·К, удельная теплоёмкость - 129 Дж/(кг·К), удельное электрическое сопротивление - 0,023 Ом·мм 2 /м. Электроотрицательность по Полингу - 2,4. Энергия сродства к электрону равна 2,8 эВ; атомный радиус 0,144 нм, ионные радиусы: Аu + 0,151 нм (координационное число 6), Аu 3+ 0,082 нм (4), 0,099 нм (6).Причиной того, что цвет золота отличается от цвета большинства металлов, является малость энергетической щели между полузаполненной 6s-орбиталью и заполненными 5d-орбиталями. В результате золото поглощает фотоны в синей, коротковолновой части видимого спектра, начиная с примерно 500 нм, но отражает более длинноволновые фотоны с меньшей энергией, которые не способны перевести 5d-электрон на вакансию в 6s-орбитали (см. рис.). Поэтому золото при освещении белым светом выглядит жёлтым. Сужение щели между 6s- и 5d-уровнями вызвано релятивистскими эффектами - в сильном кулоновском поле вблизи ядра золота орбитальные электроны движутся со скоростями, составляющими заметную часть скорости света, причём на s-электронах, у которых максимум плотности орбитали находится в центре атома, эффект релятивистского сжатия орбитали сказывается сильнее, чем на p-, d-, f-электронах, чья плотность электронного облака в окрестностях ядра стремится к нулю. Кроме того, релятивистское сжатие s-орбиталей увеличивает экранировку ядра и ослабление притяжения к ядру электронов с более высокими орбитальными моментами (непрямой релятивистский эффект). В целом, 6s-уровень снижается, а 5d-уровни растут.

Химические свойства

Золото - один из самых инертных металлов, стоящее в ряду напряжений правее всех других металлов. При нормальных условиях оно не взаимодействует с большинством и не образует оксидов, поэтому его относят к благородным металлам, в отличие от обычных металлов, разрушающихся под действием и . В XIV веке была открыта способность царской водки растворять золото, что опровергло мнение о его химической инертности. Существуют соединения золота со степенью окисления −1, называемые ауридами. Например, CsAu (аурид цезия), Na 3 Au (аурид натрия). Из чистых кислот золото растворяется только в концентрированной селеновой кислоте при 200 °C:
2Au + 6H 2 SeO 4 → Au 2 (SeO 4) 3 + 3H 2 SeO 3 + 3H 2 O
Концентрированная HClO 4 реагирует с золотом и при комнатной температуре, при этом образуя различные нестойкие оксиды хлора. Жёлтый раствор растворимого в воде перхлората золота (III).
2Au + 8HClO 4 → Cl 2 + 2Au(ClO 4) 3 + 2O 2 + 4H 2 O
Реакция обусловлена сильной окислительной способностью Cl 2 O 7 .
Золото сравнительно легко реагирует с кислородом и другими окислителями при участии комплексобразователей. Так, в водных растворах цианидов при доступе кислорода золото растворяется, образуя цианоаураты:
4Au + 8CN - + 2H 2 O + O 2 → 4 - + 4OH -
Цианоаураты легко восстанавливаются до чистого золота:
2Na + Zn → Na 2 + 2Au
В случае реакции с хлором возможность комплексообразования также значительно облегчает ход реакции: если с сухим хлором золото реагирует при ~200 °C с образованием хлорида золота(III), то в концентрированном водном растворе соляной и азотной кислот («царская водка») золото растворяется с образованием хлораурат-иона уже при комнатной температуре:
2Au + 3Cl 2 + 2Cl - → 2 -
Кроме того, золото растворяется в хлорной воде. Золото легко реагирует с жидким бромом и его растворами в воде и органических , образуя трибромид AuBr 3 .
С фтором золото реагирует в интервале температур 300−400 °C, при более низких реакция не идёт, а при более высоких фториды золота разлагаются. Золото также растворяется в ртути, образуя легкоплавкий сплав (амальгаму), содержащий интерметаллиды золото-ртуть. Известны золотоорганические соединения - например, этилдибромид золота или ауротиоглюкоза.

Физиологическое воздействие

Некоторые соединения золота токсичны, накапливаются в почках, печени, селезёнке и гипоталамусе, что может привести к органическим заболеваниям и дерматитам, стоматитам, тромбоцитопении. Органические соединения золота (препараты кризанол и ауранофин) применяются в медицине при лечении аутоиммунных заболеваний, в частности, ревматоидного артрита.

Происхождение

Зарядовое число 79 золота делает его одним из высших по количеству протонов элементов, которые встречаются в природе. Ранее предполагалось, что золото образовывалось при нуклеосинтезе сверхновых звёзд, однако по новой теории предполагается, что золото и другие элементы тяжелее железа образовались в результате разрушения нейтронных звёзд. Спутниковые спектрометры в состоянии обнаружить образующееся золото лишь косвенно, «у нас нет прямых спектроскопических доказательств, что такие элементы действительно образуются». По этой теории в результате взрыва нейтронной звезды содержащая металлы пыль (в том числе тяжёлые металлы, например, золото) выбрасывается в космическое пространство, в котором оно впоследствии конденсируется, так произошло в Солнечной системе и на Земле. Поскольку сразу после своего возникновения Земля была в расплавленном состоянии, почти всё золото в настоящее время на Земле находится в ядре. Большинство золота, которое сегодня присутствует в земной коре и мантии, было доставлено на Землю астероидами во время поздней тяжёлой бомбардировки. На Земле золото находится в рудах в породах, образованных начиная с докембрийского периода.

Геохимия

Содержание золота в земной коре очень низкое - 4,3·10 -10 % по массе (0,5-5 мг/т), но месторождения и участки, резко обогащённые металлом, весьма многочисленны. Золото содержится и в воде . Один литр и морской, и речной воды содержит менее 5·10 -9 граммов Au, что примерно соответствует 5 килограммам золота в 1 кубическом километре воды. Золоторудные месторождения возникают преимущественно в районах развития гранитоидов, небольшое их количество ассоциирует с основными и ультраосновными породами. Золото образует промышленные концентрации в постмагматических, главным образом гидротермальных, месторождениях. В экзогенных условиях золото является очень устойчивым элементом и легко накапливается в россыпях. Однако субмикроскопическое золото, входящее в состав сульфидов, при окислении последних приобретает способность мигрировать в зоне окисления. В результате золото иногда накапливается в зоне вторичного сульфидного обогащения, но максимальные его концентрации связаны с накоплением в зоне окисления, где оно ассоциирует с гидроокислами железа и марганца. Миграция золота в зоне окисления сульфидных месторождений происходит в виде бромистого и йодистого соединений в ионной форме. Некоторыми учёными допускается растворение и перенос золота сульфатом окиси железа или в виде суспензионной взвеси. В природе известны 15 золотосодержащих минералов: самородное золото с примесями серебра, меди и др., электрум Au и 25 - 45 % Ag; порпесит AuPd; медистое золото, бисмутоаурит (Au, Bi); родистое золото, иридистое золото, платинистое золото. Встречается также вместе с осмистым иридием (ауросмирид) Остальные минералы представлены теллуридами золота: калаверит AuTe 2 , креннерит AuTe 2 , сильванит AuAgTe 4 , петцит Ag 3 AuTe 2 , мутманит (Ag, Au)Te, монтбрейит Au 2 Te 3 , нагиагит Pb 5 AuSbTe 3 S 6 . Для золота характерна самородная форма. Среди других его форм стоит отметить электрум, сплав золота с серебром, который обладает зеленоватым оттенком и относительно легко разрушается при переносе водой. В горных породах золото обычно рассеяно на атомарном уровне. В месторождениях оно зачастую заключено в сульфиды и арсениды. Различаются вторичные месторождения золота - россыпи, в которые оно попадает в результате разрушения первичных рудных месторождений, и месторождения с комплексными рудами - в которых золото извлекается в качестве попутного компонента.

Добыча

Люди добывают золото с незапамятных времён. С золотом человечество столкнулось уже в V тыс. до н. э. в эпоху неолита благодаря его распространению в самородном состоянии. По предположению археологов, начало системной добычи было положено на Ближнем Востоке, откуда золотые украшения поставлялись, в частности, в Египет. Именно в Египте в гробнице королевы Зер и одной из королев Пу-аби Ур в Шумерской цивилизации были найдены первые золотые украшения, датируемые III тыс. до н. э. В России до елизаветинских времён золото не добывалось. Оно ввозилось из-за границы в обмен на товары и взималось в виде ввозных пошлин. Первое открытие запасов золота было сделано в 1732 году в Архангельской губернии, где вблизи одной деревни была обнаружена золотая жила. Её начали разрабатывать в 1745 году. Рудник с перерывами действовал до 1794 года и дал всего около 65 кг золота. Началом золотодобычи в России считают 21 мая (1 июня) 1745 г., когда Ерофей Марков, нашедший золото на Урале, объявил о своем открытии в Канцелярии Главного правления заводов в Екатеринбурге.
За всю историю человечеством добыто около 161 тысячи тонн золота, рыночная стоимость которого 8-9 триллионов долларов (оценка на 2011 год). Эти запасы распределены следующим образом (оценка на 2003 год):

  • государственные ЦБ и международные финансовые организации - около 30 тыс. тонн;
  • в ювелирных изделиях - 79 тыс. тонн;
  • изделия электронной промышленности и стоматологии - 17 тыс. тонн;
  • инвестиционные накопления - 24 тыс. тонн.
В России существует 37 золотодобывающих компаний. Лидером добычи золота в России является компания Полюс Золото, на которую приходится около 23 % рынка. Около 95 % золота в России добывается в 15 регионах (Амурская область, Республика Бурятия, Забайкальский край, Иркутская область, Камчатский край, Красноярский край, Магаданская область, Республика Саха (Якутия), Свердловская область, Республика Тыва, Хабаровский край, Республика Хакасия, Челябинская область, Чукотский автономный округ). Еще в 10 регионах добыча золота меньше тонны и нестабильная. Большая часть золота добывается из коренных месторождений, но развита также россыпная золотодобыча. Наибольшее количество золота добывается в Чукотском автономном округе, Красноярском крае и Амурской области.
В России, среди месторождений золота большую роль играют россыпи, и по добыче россыпного золота Россия занимает 1 место в мире. Большая его часть добывается в 7 регионах: Амурская область, Забайкальский край, Иркутская область, Магаданская область, Республика Саха (Якутия), Хабаровский край, Чукотский автономный округ.
В 2011 году в мире было добыто 2809,5 т золота, из них в России - 185,3 т (6,6 % мировой добычи).
В 2012 г. в России было добыто 226 тонн золота, на 15 тонн (на 7 %) больше, чем в 2011 г.
В 2013 г. в России было добыто 248,8 тонны золота, это на 22.8 тонны (на 9 %) больше, чем в 2012 г. Россия заняла третье место по объёму добытого золота с показателем в 248,8 тонны. Первое место занял Китай, где объём добычи золота составил 403 тонны. Австралия заняла второе место и добыла 268,1 тонны золота.
В 2014 г. в России было добыто 272 тонны золота, это на 23,2 тонны (на 9%) больше, чем в 2013 г. Россия заняла второе место по объёму добычи золота. Первое место в списке занял Китай, где объём добычи драгоценного металла увеличился в годовом выражении на 6 % в сравнении с 2013 г. и составил 465,7 тонны. Третье место занимает Австралия с добычей золота в 269,7 тонны, что на 1% выше показателя 2013 года.
Объём добычи золота в мире в 2014 году увеличился на 2% - до 3,109 тысячи тонн золота. При этом общемировое предложение на рынке практически не изменилось и составило 4,273 тысячи тонн. Производство первичного золота выросло на 2% - до 3,109 тысячи тонн, переработка вторичного золота снизилась на 11,1% - до 1,122 тысячи тонн. Спрос на золото в мире сократился на 18,7% - до 4,041 тысячи тонн.

Получение

Для получения золота используются его основные физические и химические свойства: присутствие в природе в самородном состоянии, способность реагировать лишь с немногими веществами (ртуть, цианиды). С развитием современных технологий более популярными становятся химические способы. В 1947 году американские физики Ингрем, Гесс и Гайдн проводили эксперимент по измерению эффективного сечения поглощения нейтронов ядрами ртути. В качестве побочного эффекта эксперимента было получено около 35 мкг золота. Таким образом, была осуществлена многовековая мечта алхимиков - трансмутация ртути в золото. Однако экономического значения такое производство золота не имеет, так как обходится во много раз дороже добычи золота из самых бедных руд.

Применение

Имеющееся в настоящее время в мире золото распределено так: около 10 % - в промышленных изделиях, остальное делится приблизительно поровну между централизованными запасами (в основном, в виде стандартных слитков химически чистого золота), собственностью частных лиц в виде слитков и ювелирными изделиями.

Запасы

В России

Запасы золота в государственном резерве России в декабре 2008 г. составили 495,9 тонн (2,2 % от всех государств мира). Доля золота в общем объёме золотовалютных резервов России в марте 2006 составила 3,8 %. По состоянию на начало 2011 года Россия занимает 8 место в мире по объёму золота, находящегося в государственном резерве. В августе 2013 года Россия увеличила золотой запас до 1015 т. В 2014 и 2016 годах Россия продолжила наращивать запасы драгоценного метала, которые на середину 2016 составили 1444,5 т.

Система проб

Во всех странах количество золота в сплавах контролируется государством. В России общепринятыми считаются пять проб золотых ювелирных сплавов: золото 375 пробы, 500, 585, 750, 958.

  • 375 проба. Основные компоненты - серебро и медь, золота - 38 %. Отрицательное свойство - тускнеет на воздухе (в основном из-за образования сульфида серебра Ag 2 S). Золото 375 пробы имеет цветовую гамму от жёлтого до красного.
  • 500 проба. Основные компоненты - серебро и медь, золота - 50,5 %. Отрицательные свойства - низкая литейность, зависимость цвета от содержания серебра.
  • 585 проба. Основные компоненты - серебро, медь, палладий, никель, золота - 59 %. Проба достаточно высока, это обусловлено многочисленными положительными качествами сплава: твёрдость, прочность, устойчивость на воздухе. Широко применяется для изготовления ювелирных украшений.
  • 750 проба. Основные компоненты - серебро, платина, медь, палладий, никель, золота - 75,5 %. Положительные свойства: подверженность полировке, твёрдость, прочность, хорошо обрабатывается. Цветовая гамма - от зелёного через ярко-жёлтый до розового и красного. Используется в ювелирном искусстве, особенно для филигранных работ.
  • 958 проба. Содержит до 96,3 % чистого золота. Редко используется, так как сплав этой пробы является весьма мягким материалом, который не держит полировку и характеризуется ненасыщенностью цвета.
  • 999 проба. Чистое золото.

Уникальные химические свойства золота обеспечили ему особое место в ряду металлов, используемых на Земле. Золото известно человечеству с древнейших времен. Его издревле использовали в качестве украшений, алхимики пытались вывести драгоценный металл из других менее благородных веществ. В настоящее время спрос на него только растет. Его используют в промышленности, медицине, технике. Кроме того, его приобретают и государства, и частные лица, используя в качестве инвестиционного металла.

Химические свойства «короля металлов»

Для обозначения золота используется знак Au. Это сокращение от латинского наименования металла — Aurum. В периодической системе Менделеева оно находится под номером 79 и располагается в 11 группе. По внешнему виду это металл желтого цвета. Золото находится в одной группе с медью, серебром и рентгением, но его хим свойства ближе к металлам платиновой группы.

Инертность — ключевое свойство этого химического элемента, которая возможна благодаря высокому значению электродного потенциала. При стандартных условиях золото не взаимодействует ни с чем, за исключением ртути. С ней этот химический элемент образует амальгаму, которая легко распадается при нагревании всего в 750 градусов по Цельсию.

Хим свойства элемента таковы, что остальные соединения с ним тоже недолговечны. Это свойство активно используется в добыче благородного металла. Существенно реакционность золота возрастает только при интенсивном нагревании. Например, его можно растворить в хлорной или бромной воде, спиртовом растворе йода и, конечно, в царской водке — смеси соляной и азотной кислоты в определенной пропорции. Химическая формула реакции такого соединения: 4HCl + HNO 3 + Au = H (AuCl 4) + NO + 2H 2.

Химия золота такова, что при нагревании оно может взаимодействовать с галогенами. Чтобы образовать соли золота, надо восстановить этот химический элемент из кислотного раствора. При этом соли не выпадут в осадок, а растворятся в жидкость, образуя коллоидные растворы различного цвета.

Несмотря на то что золото не вступает в активные химические реакции с веществами, в быту не стоит допускать взаимодействия изделий из него с ртутью, хлором и йодом. Различная бытовая химия тоже не лучший сосед для изделий из драгоценного металла.

Дело в том, что в ювелирных украшениях используется сплав золота с другими металлами, и различные вещества, взаимодействуя с этими примесями, могут нанести красоте изделия непоправимый ущерб. Если нагреть золото выше 100 градусов по Цельсию, то на его поверхности появится окисная пленка толщиной в одну миллионную долю миллиметра.

Другие особенности драгоценного металла

Золото — один из самых тяжелых известных металлов. Его плотность равна 19,3 г/cм 3 . Слиток весом в 1 килограмм имеет совсем небольшие размеры, 8х4х1,8 сантиметров. Именно таков стандартный размер банковского золотого слитка этого веса. Он сопоставим с размером обычной кредитной карты, правда, слиток немного толще.

Тяжелее, чем золото, только несколько химических элементов: плутоний, осмий, иридий, платина и рений. Но их содержание в земной коре, даже вместе взятых, намного меньше, чем этого драгоценного металла. При этом плутоний (химический знак Pu, не путать с Pt — это знак платины) — радиоактивный элемент.

Химический состав золота обеспечивает его физические свойства. Так, к основным свойствам этого металла, делающим его уникальным, относится:

  1. Ковкость, пластичность, тягучесть. Его очень легко расплющить или вытянуть. Так, из всего одного грамма золота можно получить проволоку длиной в 3 километра, а площадь тонких листов, полученных из 1 килограмма, составит 530 квадратных метров. Сверхтонкие листы из золотой фольги получили название «сусального золота». Им покрывают, к примеру, церковные купола и внутреннее убранство дворцов. Благодаря пластичности малым количеством желтого металла можно покрыть гигантские площади.
  2. Мягкость. Золото высокой пробы мягко настолько, что его легко поцарапать даже ногтем. Именно поэтому слитки в банках продаются в герметичных пластиковых упаковках. Если на нем будет замечена хоть одна маленькая царапина, то он будет признан бракованным. Для того чтобы сделать золото более прочным, при изготовлении изделий в него добавляют другие металлы. Это свойство обеспечило высокую популярность короля металлов в ювелирной промышленности.
  3. Высокая электропроводность. За счет этого хим свойства золото высоко ценится в электротехнике и промышленности. Лучше него электричество проводит только серебро и медь. При этом золото почти не нагревается: по теплопроводности выше него алмаз, серебро и медь. Вместе с таким свойством, как устойчивость к окислению, золото — идеальное вещество для изготовления полупроводников.
  4. Отражение инфракрасного света. Тончайшее , нанесенное на стекло, не пропускает инфракрасное излучение, оставляя видимую часть спектра. Это свойство активно применяется в космонавтике, когда нужно защитить глаза космонавтов от пагубного солнечного воздействия. Зачастую напыление применяют и в зеркальной системе высотных зданий, чтобы снизить расходы на охлаждение помещений.
  5. Устойчивость к коррозии и окислению. Слитки, которые хранятся в соответствии с правилами, даже при взаимодействии с воздухом практически не подвержены никакому химическому влиянию. Так что большая сохранность золота обеспечила его высокую популярность.

Метод добычи золота

Золото является довольно редким элементом на Земле. Его содержание в земной коре невелико. В основном оно встречается в виде россыпей в самородном состоянии или в виде руды и изредка встречается в виде минералов. Иногда золото добывается в качестве сопутствующего вещества при разработке медных или полиметаллических руд.

Способов добычи этого благородного металла человечество знает множество. Самый простой — отмучивание, то есть отделение золотой руды от пустой породы по специальному техпроцессу. Однако этот способ предполагает большие потери, так как технология далеко не совершенна. На смену механическому способу добычи золотой руды пришла химия. Алхимики, а после них химики получили множество способов выделения искомого металла из породы, среди них самые распространенные:

  • амальгамация;
  • цианирование;
  • электролиз.

Электролиз, открытый в 1896 году Э. Вольвиллом, получил широкое распространение в промышленности. Его суть заключается в том, что аноды, состоящие из золотосодержащего вещества, помещаются в ванную с солянокислым раствором. В качестве катода используется лист из чистого золота. В процессе электролиза (пропускание тока через катод и анод) на катоде откладывается искомое вещество, а все примеси выпадают в осадок. Таким образом хим свойства драгоценного металла помогают получать его в промышленных масштабах практически без потерь.

Сплавы с другими металлами

Сплавы благородного металла образуются с двумя целями:

  1. Изменить механические свойства золота, сделать его более прочным или, напротив, более хрупким и ковким.
  2. Сэкономить запасы драгоценного металла.

Различные добавки в золото называются лигатурой. Цвет и свойства сплава зависят от того, какова химическая формула его составляющих. Так, серебро и медь значительно повышают твердость сплава, что позволяет использовать его для изготовления ювелирных изделий. А вот свинец, платина, кадмий, висмут и некоторые другие хим элементы делают сплав более хрупким. Несмотря на это, их часто используют для производства самых дорогих украшений, так как они существенно изменяют цвет изделия. Самые распространенные сплавы:

  • зеленое золото — сплав 75% золота, 20% серебра и 5% индия;
  • белое золото — сплав золота и платины (в соотношении 47:1) или золота, палладия и серебра в пропорции 15:4:1.
  • красное золото — сплав золота (78%) и алюминия (22%);
  • в пропорции 3:1 (что интересно, сплав в любой другой пропорции приобретет белый цвет, и эти сплавы называются общим термином «электрон»).

В зависимости от количества золота в сплаве, определяют его пробу. Она измеряется в промилле и обозначается трехзначной цифрой. Количество искомого металла в каждом сплаве строго регулируется государством. В России официально приняты только 5 проб: 375, 500, 585, 750, 958, 999. Цифры пробы означают, что именно столько мер золота приходится на 1000 мер сплава.

Иными словами, в слитке или изделии 585 пробы содержится 58,5% золота. Золото высшей пробы, 999, считается чистым. Его для своих нужд использует только химия, так как этот металл слишком хрупкий и мягкий. 750 проба — самая популярная в ювелирной промышленности. Ее основные компоненты — серебро, медь, платина. На изделии обязательно должно стоять клеймо — цифровой знак, обозначающий пробу.

Сегодня золото ценится во всем мире. Нет ни одной девушки, которая бы не мечтала о золотых украшениях. Драгоценный металл обрел огромную популярность достаточно давно. Еще в глубокой древности с его помощью изготавливали ювелирные изделия, обереги и посуду. Сегодня приобрести изделие из золота не составит особого труда. Многочисленные ювелирные магазины предлагают огромный ассортимент.

Немного истории

Мало кто знает, что золото - это первый металл, который был найден человечеством. Еще с эпохи неолита начинается история открытия химического элемента. Золото за несколько тысячелетий до нашей эры широко использовалось в Древнем Египте, Китае, Риме, Индии. Упоминание о драгоценном металле можно встретить в «Одиссее», Библии и других памятниках древней литературы. Древние алхимики называли золото «царем металлов». А обозначалось оно символом солнца.

В тех местах, где зародились первые цивилизации, как раз-таки и начали масштабно добывать золото. Это восточное Средиземноморье, долина Инда, Северная Африка. Золото предпочитает одиночество. Чаще всего его находят в самородном виде. В древности металл собирали вручную. Чтобы собрать один грамм золота, приходилось работать сутками.

Тесно связана с различными географическими открытиями история химического элемента. Золото удавалось обнаружить практически сразу на новой земле.

Золото в природе

Химический элемент Золото в природе распространен достаточно широко. В среднем в литосфере содержится около 4,3·10 - 7 %, исходя из массы. Стоимость металла является высокой за счет сложности его добычи. Золото содержится также в магматических породах. Здесь оно рассеяно. В земной коре образуется гидротермальное месторождения золота, которое играет огромную роль в промышленности. В самородном состоянии этот металл чаще всего добывают в рудах. Лишь в редких случаях образуются минералы с висмутом, сурьмой, селеном и т. д.

Химический элемент Золото содержится также и в биосфере. Здесь он мигрирует в комплексе с различными органическими соединениями. В речных взвесях нередко можно встретить металл. Один литр природной воды может содержать около 4·10 -9 % драгоценного металла. В местах золоторудных месторождений в подземных водах золото может содержаться в гораздо большем количестве. Как свидетельствует история химического элемента, золото удавалось находить даже в виде целых залежей драгоценного металла под землей.

Сегодня золото добывают в 40 странах мира. Основные запасы драгоценного металла сосредоточены в государствах СНГ, Канаде, ЮАР.

Физические свойства драгоценного металла

Золото - это достаточно пластичный металл. Он с легкостью поддается механическому воздействию. Золото хорошего качества может быть вытянуто в проволоку или выковано в плоские листы. Металл устойчив к различным химическим воздействиям, легко проводит электричество и тепло. при комнатной температуре составляет около 19,32 г/см 3 .

Химический элемент Золото характеризуется ярко-желтым цветом при условии отсутствия примесей. Но чистое золото в природе практически не встречается. Даже в банковских слитках металл представлен не в идеально чистом виде. В природе же он встречается с добавлением серебра, меди и т. д.

Золото достаточно легко полируется. Благодаря хорошей светоотражающей способности металл очень ценится в ювелирном деле. Удивительно, что через тонкие листы драгоценного металла могут проходить даже солнечные лучи. При этом их температура будет снижаться. Неслучайно в современном строительстве химический элемент Золото используют для тонирования окон.

Химические свойства золота

Как свидетельствует история открытия химического элемента, Золото было известно еще задолго до появления таблицы Менделеева. Но и в ней металл занимает почетное место. В таблице Золото указано под атомным номером 79 и обозначается латинскими буквами Au. Валентность драгоценного металла в химических соединениях чаще всего +1 или +3.

На протяжении многих столетий химики проводили огромное количество опытов над золотом. Было выяснено, что кислород и сера, которые имеют агрессивное воздействие на большинство металлов, на золото не оказывают совершенно никакого влияния. Исключением могут быть лишь его атомы на поверхности.

Состав золота определяет его химические свойства. Металл не реагирует с фосфором, водородом, азотом. А вот с галогенами Золото образует соединения при нагревании. С хлорной и возникает реакция даже при комнатной температуре. Эти реактивы доступны только в лабораториях. А вот в быту опасность для металла может представлять раствор иодида калия и йода.

Минеральные кислоты и щелочи в большинстве случаев не действуют на золото. Именно на этом свойстве основывается способ определения подлинности драгоценного металла. Мало кто знает, как находят золото среди множества ювелирных изделий. Украшение заливают азотной кислотой. Золото под воздействием химического вещества не изменит своего внешнего вида. А вот другой металл может вступить в реакцию.

Как находят золото?

Наиболее часто золото добывают из россыпных месторождений. При этом используется метод отмучивания. Он основывается на разности плотности и золота. Как получить золото высокого качества, могут знать лишь настоящие профессионалы своего дела.

Популярными являются такие способы, как амальгамация и цианирование. Таким образом начали добывать золото в Америке и Африке в конце девятнадцатого века. Сегодня же коренные месторождения являются основными источниками получения драгоценного металла. Состав золота может зависеть от пород, которые находятся рядом. А также от климатической среды.

Изначально золотую породу дробят и обрабатывают раствором натрия или Далее материал подвергается очистке электролизом. Заранее подготавливают ванну с солянокислым раствором. При прохождении тока через породу примеси выпадают в виде осадка. В результате получается очищенный драгоценный металл.

Где применяют золото?

Многим знакомо золото в форме ювелирных изделий. Между тем металл широко используется в различных отраслях промышленности. При этом состав золота может быть несколько другим. Достаточно часто используются сплавы с другими металлами. Таким образом не только экономится дорогой материал, но и повышается его прочность. Драгоценный металл становится более устойчивым к различным механическим повреждениям.

Качество золота, которое используется в промышленности, обозначается пробой. Таким образом можно выяснить, насколько материал является «чистым». Наиболее часто драгоценный металл разбавляют медью. Сплавы с серебром могут использоваться в электротехнике. Наиболее дорогостоящими являются сплавы золота с платиной. Такой материал используется в ювелирной промышленности, а также в производстве химически устойчивой аппаратуры. Соединения Золота с начала XX века применяли еще и в фотографии. С помощью химического элемента выполнялось тонирование.

Золото как элемент искусства

В ювелирном деле золото применялось еще с древних времен. Сегодня этот вид промышленности является одним из наиболее прибыльных. Многие изделия, разработанные дизайнерами, пустили на поток. Но актуальными на сегодняшний день остаются украшения ручной работы. Изготовление таких изделий - это настоящее искусство, которое заслуживает пристального внимания.

С тех пор как произошло открытие химического элемента, золото люди начали использовать для изготовления украшений и различного декора. Сегодня дизайнеры, которые не только разрабатывают изделия, но и выполняют их самостоятельно, имеют хороший заработок. Ручная работа в совокупности с дорогостоящим материалом дает отличный результат. Все ювелирные украшения получаются красивыми и оригинальными.

Золото в экономике

В условиях товарного производства функцию всеобщего эквивалента выполняет именно золото. Значение этого металла переоценить сложно. Материал имеет свою потребительскую стоимость. Во многих случаях драгоценный металл может заменить даже деньги. А ценится золото благодаря своим свойствам. Оно может выступать в качестве наилучшего денежного товара. Золото долго хранится, не поддается химическому воздействию, легко делится и обрабатывается.

Один и тот же слиток может использоваться в промышленности, а далее, при небольшой обработке, - становиться материалом для изготовления ювелирного изделия. Можно сказать, что этот драгоценный металл бессмертен.

Банковская сфера

В глубокой древности золото использовалось только для изготовления украшений. Далее оно стало отличным средством сбережения и накопления богатств. Тем, кто знал, как получить золото, не нужно было задумываться о завтрашнем дне. Ведь драгоценный металл стоил достаточно дорого во все времена.

Сегодня золото широко используется для изготовления монет. Но в денежный оборот драгоценный металл не поступает. Монеты или слитки хранятся в финансовых учреждениях в виде сбережений. Инвестирование в драгоценные металлы сегодня на пике популярности. Таким образом можно не только сохранить денежные средства, но и приумножить их.

Что означает проба?

С развитием промышленности многие компании научились изготавливать качественную бижутерию, которая внешне практически не отличается от настоящего золота. Недобросовестный продавец с легкостью продаст доверчивому покупателю «пустышку». Поэтому каждый должен знать, как выбирать золотое изделие правильно.

В первую очередь качество этого драгоценного металла определяется пробой. Даже если украшение поступает в продажу из-за границы, на нем ставится государственное клеймо. Наиболее распространенными являются изделия В них содержится 58,5% чистого золота. Изделия 999 пробы в массовой продаже не встречаются. А вот на слитках, которые наполняют государственный золотой фонд, стоит 990 проба.

О чем расскажет цвет?

Золотые изделия одной и той же пробы могут отличаться по цвету. Внешний вид готовой вещи зависит от примесей. Платина и никель придают сплаву светлый оттенок. Медь и кобальт позволяют получить ювелирные изделия темного цвета.

Огромной популярностью сегодня пользуется Такой сплав получают благодаря добавлению серебра и меди. А вот эксклюзивное черное золото создают с использованием кобальта и хрома. Во многих случаях потребители переплачивают за модные тенденции. При этом содержание золота в изделии может быть минимальным. Всего через несколько лет украшение может обесцениться. Поэтому предпочтение все же стоит отдавать классическому желтому металлу.

Как подтвердить качество ювелирного изделия?

У многих может возникнуть желание выяснить настоящую стоимость ювелирного украшения. Можно обратиться к частному эксперту, но в этом случае результат не будет подтвержден документально. Точное процентное соотношение золота и примесей в ювелирном изделии можно определить в Государственной инспекции пробирного надзора. После проведения процедуры потребителю выдается сертификат, подтверждающий качество. Само изделие во время проведения экспертизы не портится.

Где приобрести золото?

Все зависит от конечных целей. Если необходимо купить ювелирное изделие в подарок, можно обратиться в любой специализированный магазин. Гораздо дешевле качественные золотые украшения можно приобрести в режиме онлайн. Предпочтение стоит отдавать традиционному В нем драгоценный металл в чистом виде содержится в наибольшем количестве. Такое изделие сможет прослужить долго и даже будет передаваться по наследству.

Для инвестирования подойдут банковские золотые слитки. Каждое финансовое учреждение предлагает свои условия приобретения золота. Но наиболее выгодные инвестиции не обязательно гарантируют надежность. Предпочтение следует отдавать банкам, которые работают уже более 10 лет и получают положительные отзывы от имеющихся клиентов.

Статьи по теме: